ﻻ يوجد ملخص باللغة العربية
Multicomponent alloying has displayed extraordinary potential for producing exceptional structural and functional materials. However, the synthesis of single-phase, multi-principal covalent compounds remains a challenge. Here we present a diffusion-controlled alloying strategy for the successful realization of covalent multi-principal transition metal carbides (MPTMCs) with a single face-centered cubic (FCC) phase. The increased interfacial diffusion promoted by the addition of a nonstoichiometric compound leads to rapid formation of the new single phase at much lower sintering temperature. Direct atomic-level observations via scanning transmission electron microscopy demonstrate that MPTMCs are composed of a single phase with a random distribution of all cations, which holds the key to the unique combinations of improved fracture toughness, superior Vickers hardness, and extremely lower thermal diffusivity achieved in MPTMCs. The present discovery provides a promising approach toward the design and synthesis of next-generation high-performance materials.
By means of theoretical modeling and experimental synthesis and characterization, we investigate the structural properties of amorphous Zr-Si-C. Two chemical compositions are selected, Zr0.31Si0.29C0.40 and Zr0.60Si0.33C0.07. The amorphous structures
The DFT-1/2 method in density functional theory [L. G. Ferreira et al., Phys. Rev. B 78, 125116 (2008)] aims to provide accurate band gaps at the computational cost of semilocal calculations. The method has shown promise in a large number of cases, h
Temperature dependent electrical resistivity, crystal structure and heat capacity measurements reveal a resistivity drop and metal to semiconductor transition corresponding to first order structural phase transition near 400 K in Ca3Co4O9. The lattic
Since AlN has emerged as an important piezoelectric material for a wide variety of applications, efforts have been made to increase its piezoelectric response via alloying with transition metals that can substitute for Al in the wurtzite lattice. Her
MXenes are a set of two-dimensional transition metal carbides and nitrides that offer many potential applications in energy storage and electronic devices. As an important parameter to design new electronic devices, we investigate the work functions