ترغب بنشر مسار تعليمي؟ اضغط هنا

OH terminated two-dimensional transition metal carbides and nitrides (MXenes) as ultralow work function materials

101   0   0.0 ( 0 )
 نشر من قبل Mohammad Khazaei
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MXenes are a set of two-dimensional transition metal carbides and nitrides that offer many potential applications in energy storage and electronic devices. As an important parameter to design new electronic devices, we investigate the work functions of bare MXenes and their functionalized ones with F, OH, and O chemical groups using first-principles calculations. From our calculations, it turns out that the OH terminated MXenes attain ultralow work functions between 1.6 and 2.8 eV. Moreover, depending on the type of the transition metal, the F or O functionalization affects increasing or decreasing the work functions. We show that the changes in the work functions upon functionalizations are linearly correlated with the changes in the surface dipole moments. It is shown that the work functions of the F or O terminated MXenes are controlled by two factors: the induced dipole moments by the charge transfers between F/O and the substrate, and the changes in the total surface dipole moments caused by surface relaxation upon the functionalization. However, in the cases of the OH terminated MXenes, in addition to these two factors, the intrinsic dipole moments of the OH groups play an important role in determining the total dipole moments and consequently justify their ultralow work functions.



قيم البحث

اقرأ أيضاً

LaB6 has been used as a commercial electron emitter for decades. Despite the large number of studies on the work function of LaB6, there is no comprehensive understanding of work function trends in the hexaboride materials family. In this study, we u se Density Functional Theory (DFT) calculations to calculated trends of rare earth hexaboride work function and rationalize these trends based on the electronegativity of the metal element. We predict that alloying LaB6 with Ba can further lower the work function by ~0.2 eV. Interestingly, we find that alloyed (La, Ba)B6 can have lower work functions than either LaB6 or BaB6, benefitting from an enhanced surface dipole due to metal element size mismatch. In addition to hexaborides we also investigate work function trends of similar materials families, namely tetraborides and transition metal nitrides, which, like hexaborides, are electrically conductive and refractory and thus may also be promising materials for electron emission applications. We find that tetraborides consistently have higher work functions than their hexaboride analogues as the tetraborides having less ionic bonding and smaller positive surface dipoles. Finally, we find that HfN has a low work function of about 2.2 eV, making HfN a potentially promising new electron emitter material.
Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nanostructures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing. Transition metal nitrides are an exciting class of new plasmonic materials with superior thermal and mechanical properties compared to conventional noble metals, but their suitability for plasmonic hot carrier applications remains unknown. Here, we present fully first-principles calculations of the plasmonic response, hot carrier generation and subsequent thermalization of all group IV, V and VI transition metal nitrides, fully accounting for direct and phonon-assisted transitions as well as electron-electron and electron-phonon scattering. We find the largest frequency ranges for plasmonic response in ZrN, HfN and WN, between those of gold and silver, while we predict strongest absorption in the visible spectrum for the VN, NbN and TaN. Hot carrier generation is dominated by direct transitions for most of the relevant energy range in all these nitrides, while phonon-assisted processes dominate only below 1 eV plasmon energies primarily for the group IV nitrides. Finally, we predict the maximum hot carrier lifetimes to be around 10 fs for group IV and VI nitrides, a factor of 3 - 4 smaller than noble metals, due to strong electron-phonon scattering. However, we find longer carrier lifetimes for group V nitrides, comparable to silver for NbN and TaN, while exceeding 100 fs (twice that of silver) for VN, making them promising candidates for efficient hot carrier extraction.
Materials with low work functions are critical for an array of applications requiring the facile removal or efficient transport of electrons through a device. Perovskite oxides are a promising class of materials for finding low work functions, and he re we target applications in thermionic and field electron emission. Perovskites have highly malleable compositions which enable tunable work function values over a wide range, robust stability at high temperatures, and high electronic conductivities. In this work, we screened over 2900 perovskite oxides in search of stable, conductive, low-work-function materials using Density Functional Theory (DFT) methods. Our work provides insight into the materials chemistry governing the work function value of a perovskite, where materials with barely filled d bands possess the lowest work functions. Our screening has resulted in a total of seven promising compounds, such as BaMoO3 and SrNb0.75Co0.25O3 with work functions of 1.1 eV and 1.5 eV, respectively. These promising materials and others presented in this study may find use as low work function electron emitters in high power vacuum electronic and thermionic energy conversion devices. Moreover, the database of calculated work functions and materials chemistry trends governing the value of the work function may aid in the engineering of perovskite heterojunction devices.
We have investigated by means of high-pressure x-ray diffraction the structural stability of Pd2Mo3N, Ni2Mo3C0.52N0.48, Co3Mo3C0.62N0.38, and Fe3Mo3C. We have found that they remain stable in their ambient-pressure cubic phase at least up to 48 GPa. All of them have a bulk modulus larger than 330 GPa, being the least compressible material Fe3Mo3C, B0 = 374(3) GPa. In addition, apparently a reduction of compressibility is detected as the carbon content increased. The equation of state for each material is determined. A comparison with other refractory materials indicates that interstitial nitrides and carbides behave as ultra-incompressible materials.
139 - Jie Li , Ruqian Wu 2020
Finding new two-dimensional (2D) materials with novel quantum properties is highly desirable for technological innovations. In this work, we studied a series of metal-organic frameworks (MOFs) with different metal cores and discovered various attract ive properties, such as room-temperature magnetic ordering, strong perpendicular magnetic anisotropy, huge topological band gap (>200meV), and excellent spin-filtering performance. As many MOFs have been successfully synthesized in experiments, our results suggest realistic new 2D functional materials for the design of spintronic nanodevices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا