ﻻ يوجد ملخص باللغة العربية
MXenes are a set of two-dimensional transition metal carbides and nitrides that offer many potential applications in energy storage and electronic devices. As an important parameter to design new electronic devices, we investigate the work functions of bare MXenes and their functionalized ones with F, OH, and O chemical groups using first-principles calculations. From our calculations, it turns out that the OH terminated MXenes attain ultralow work functions between 1.6 and 2.8 eV. Moreover, depending on the type of the transition metal, the F or O functionalization affects increasing or decreasing the work functions. We show that the changes in the work functions upon functionalizations are linearly correlated with the changes in the surface dipole moments. It is shown that the work functions of the F or O terminated MXenes are controlled by two factors: the induced dipole moments by the charge transfers between F/O and the substrate, and the changes in the total surface dipole moments caused by surface relaxation upon the functionalization. However, in the cases of the OH terminated MXenes, in addition to these two factors, the intrinsic dipole moments of the OH groups play an important role in determining the total dipole moments and consequently justify their ultralow work functions.
LaB6 has been used as a commercial electron emitter for decades. Despite the large number of studies on the work function of LaB6, there is no comprehensive understanding of work function trends in the hexaboride materials family. In this study, we u
Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nanostructures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing.
Materials with low work functions are critical for an array of applications requiring the facile removal or efficient transport of electrons through a device. Perovskite oxides are a promising class of materials for finding low work functions, and he
We have investigated by means of high-pressure x-ray diffraction the structural stability of Pd2Mo3N, Ni2Mo3C0.52N0.48, Co3Mo3C0.62N0.38, and Fe3Mo3C. We have found that they remain stable in their ambient-pressure cubic phase at least up to 48 GPa.
Finding new two-dimensional (2D) materials with novel quantum properties is highly desirable for technological innovations. In this work, we studied a series of metal-organic frameworks (MOFs) with different metal cores and discovered various attract