ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural properties of amorphous metal carbides; theory and experiment

126   0   0.0 ( 0 )
 نشر من قبل Krisztina K\\'adas
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By means of theoretical modeling and experimental synthesis and characterization, we investigate the structural properties of amorphous Zr-Si-C. Two chemical compositions are selected, Zr0.31Si0.29C0.40 and Zr0.60Si0.33C0.07. The amorphous structures are generated in the theoretical part of our work, by the stochastic quenching (SQ) method, and detailed comparison is made as regards structure and density of the experimentally synthesized films. These films are analyzed experimentally using X-ray absorption spectroscopy, transmission electron microscopy and X-ray diffraction. Our results demonstrate for the first time a remarkable agreement between theory and experiment concerning bond distances and atomic coordination of this complex amorphous metal carbide. The demonstrated power of the SQ method opens up avenues for theoretical predictions of amorphous materials in general.



قيم البحث

اقرأ أيضاً

It is well known that pressure causes profound changes in the properties of atoms and chemical bonding, leading to the formation of many unusual materials. Here we systematically explore all stable calcium carbides at pressures from ambient to 100 GP a using variable-composition evolutionary structure predictions. We find that Ca5C2, Ca2C, Ca3C2, CaC, Ca2C3, and CaC2 have stability fields on the phase diagram. Among these, Ca2C and Ca2C3 are successfully synthesized for the first time via high-pressure experiments with excellent structural correspondence to theoretical predictions. Of particular significance are the base-centered monoclinic phase (space group C2/m) of Ca2C, a quasi-two-dimensional metal with layers of negatively charged calcium atoms, and the primitive monoclinic phase (space group P21/c) of CaC with zigzag C4 groups. Interestingly, strong interstitial charge localization is found in the structure of R-3m-Ca5C2 with semimetallic behaviour.
We have investigated by means of high-pressure x-ray diffraction the structural stability of Pd2Mo3N, Ni2Mo3C0.52N0.48, Co3Mo3C0.62N0.38, and Fe3Mo3C. We have found that they remain stable in their ambient-pressure cubic phase at least up to 48 GPa. All of them have a bulk modulus larger than 330 GPa, being the least compressible material Fe3Mo3C, B0 = 374(3) GPa. In addition, apparently a reduction of compressibility is detected as the carbon content increased. The equation of state for each material is determined. A comparison with other refractory materials indicates that interstitial nitrides and carbides behave as ultra-incompressible materials.
Recently amorphous oxide semiconductors (AOS) have gained commercial interest due to their low-temperature processability, high mobility and areal uniformity for display backplanes and other large area applications. A multi-cation amorphous oxide (a- IGZO) has been researched extensively and is now being used in commercial applications. It is proposed in the literature that overlapping In-5s orbitals form the conduction path and the carrier mobility is limited due to the presence of multiple cations which create a potential barrier for the electronic transport in a-IGZO semiconductors. A multi-anion approach towards amorphous semiconductors has been suggested to overcome this limitation and has been shown to achieve hall mobilities up to an order of magnitude higher compared to multi-cation amorphous semiconductors. In the present work, we compare the electronic structure and electronic transport in a multi-cation amorphous semiconductor, a-IGZO and a multi-anion amorphous semiconductor, a-ZnON using computational methods. Our results show that in a-IGZO, the carrier transport path is through the overlap of outer s-orbitals of mixed cations and in a-ZnON, the transport path is formed by the overlap of Zn-4s orbitals, which is the only type of metal cation present. We also show that for multi-component ionic amorphous semiconductors, electron transport can be explained in terms of orbital overlap integral which can be calculated from structural information and has a direct correlation with the carrier effective mass which is calculated using computationally expensive first principle DFT methods.
In recent years, there has been an intense interest in understanding the microscopic mechanism of thermally induced magnetization switching driven by a femtosecond laser pulse. Most of the effort has been dedicated to periodic crystalline structures while the amorphous counterparts have been less studied. By using a multiscale approach, i.e. first-principles density functional theory combined with atomistic spin dynamics, we report here on the very intricate structural and magnetic nature of amorphous Gd-Fe alloys for a wide range of Gd and Fe atomic concentrations at the nanoscale level. Both structural and dynamical properties of Gd-Fe alloys reported in this work are in good agreement with previous experiments. We calculated the dynamic behavior of homogeneous and inhomogeneous amorphous Gd-Fe alloys and their response under the influence of a femtosecond laser pulse. In the homogeneous sample, the Fe sublattice switches its magnetization before the Gd one. However, the temporal sequence of the switching of the two sublattices is reversed in the inhomogeneous sample. We propose a possible explanation based on a mechanism driven by a combination of the Dzyaloshiskii-Moriya interaction and exchange frustration, modeled by an antiferromagnetic second-neighbour exchange interaction between Gd atoms in the Gd-rich region. We also report on the influence of laser fluence and damping effects in the all-thermal switching.
Multicomponent alloying has displayed extraordinary potential for producing exceptional structural and functional materials. However, the synthesis of single-phase, multi-principal covalent compounds remains a challenge. Here we present a diffusion-c ontrolled alloying strategy for the successful realization of covalent multi-principal transition metal carbides (MPTMCs) with a single face-centered cubic (FCC) phase. The increased interfacial diffusion promoted by the addition of a nonstoichiometric compound leads to rapid formation of the new single phase at much lower sintering temperature. Direct atomic-level observations via scanning transmission electron microscopy demonstrate that MPTMCs are composed of a single phase with a random distribution of all cations, which holds the key to the unique combinations of improved fracture toughness, superior Vickers hardness, and extremely lower thermal diffusivity achieved in MPTMCs. The present discovery provides a promising approach toward the design and synthesis of next-generation high-performance materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا