ﻻ يوجد ملخص باللغة العربية
In this paper, we consider Maxwells equations in linear dispersive media described by a single-pole Lorentz model for electronic polarization. We study two classes of commonly used spatial discretizations: finite difference methods (FD) with arbitrary even order accuracy in space and high spatial order discontinuous Galerkin (DG) finite element methods. Both types of spatial discretizations are coupled with second order semi-implicit leap-frog and implicit trapezoidal temporal schemes studied in our previous research [5,6]. By performing detailed dispersion analysis for the semi-discrete and fully discrete schemes, we obtain rigorous quantification of the dispersion error for Lorentz dispersive dielectrics. In particular, comparisons of dispersion error can be made taking into account the model parameters, and mesh sizes in the design of the two types of schemes. The results for the numerical dispersion analysis can guide us in the optimal choice of discretization parameters for the more complicated and nonlinear models. The numerical dispersion analysis of the fully discrete FD and DG schemes, for the dispersive Maxwell model considered in this paper, clearly indicate the dependence of the numerical dispersion errors on spatial and temporal discretizations, their order of accuracy, mesh discretization parameters and model parameters. The results obtained here cannot be arrived at by considering discretizations of Maxwells equations in free space. In particular, our results contrast the advantages and disadvantages of using high order FD or DG schemes and leap-frog or trapezoidal time integrators over different frequency ranges using a variety of measures of numerical dispersion errors. Finally, we highlight the limitations of the second order accurate temporal discretizations considered.
In this work we construct reliable a posteriori estimates for some discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the rela
We describe a fourth-order accurate finite-difference time-domain scheme for solving dispersive Maxwells equations with nonlinear multi-level carrier kinetics models. The scheme is based on an efficient single-step three time-level modified equation
Motivated by finite element spaces used for representation of temperature in the compatible finite element approach for numerical weather prediction, we introduce locally bounded transport schemes for (partially-)continuous finite element spaces. The
In this paper we present a novel arbitrary high order accurate discontinuous Galerkin (DG) finite element method on space-time adaptive Cartesian meshes (AMR) for hyperbolic conservation laws in multiple space dimensions, using a high order aposterio
This paper investigates superconvergence properties of the local discontinuous Galerkin methods with generalized alternating fluxes for one-dimensional linear convection-diffusion equations. By the technique of constructing some special correction fu