ﻻ يوجد ملخص باللغة العربية
Motivated by finite element spaces used for representation of temperature in the compatible finite element approach for numerical weather prediction, we introduce locally bounded transport schemes for (partially-)continuous finite element spaces. The underlying high-order transport scheme is constructed by injecting the partially-continuous field into an embedding discontinuous finite element space, applying a stable upwind discontinuous Galerkin (DG) scheme, and projecting back into the partially-continuous space; we call this an embedded DG scheme. We prove that this scheme is stable in L2 provided that the underlying upwind DG scheme is. We then provide a framework for applying limiters for embedded DG transport schemes. Standard DG limiters are applied during the underlying DG scheme. We introduce a new localised form of element-based flux-correction which we apply to limiting the projection back into the partially-continuous space, so that the whole transport scheme is bounded. We provide details in the specific case of tensor-product finite element spaces on wedge elements that are discontinuous P1/Q1 in the horizontal and continuous P2 in the vertical. The framework is illustrated with numerical tests.
We present unconditionally energy stable Runge-Kutta (RK) discontinuous Galerkin (DG) schemes for solving a class of fourth order gradient flows. Our algorithm is geared toward arbitrarily high order approximations in both space and time, while energ
Depending on their sizes, dust grains store more or less charges, catalyse more or less chemical reactions, intercept more or less photons and stick more or less efficiently to form embryos of planets. Hence the need for an accurate treatment of dust
In this work we construct reliable a posteriori estimates for some discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the rela
In this paper we present a novel arbitrary high order accurate discontinuous Galerkin (DG) finite element method on space-time adaptive Cartesian meshes (AMR) for hyperbolic conservation laws in multiple space dimensions, using a high order aposterio
Generalizing the framework of an ultra-weak formulation for a hypersingular integral equation on closed polygons in [N. Heuer, F. Pinochet, arXiv 1309.1697 (to appear in SIAM J. Numer. Anal.)], we study the case of a hypersingular integral equation o