ﻻ يوجد ملخص باللغة العربية
This paper investigates superconvergence properties of the local discontinuous Galerkin methods with generalized alternating fluxes for one-dimensional linear convection-diffusion equations. By the technique of constructing some special correction functions, we prove the $(2k+1)$th order superconvergence for the cell averages, and the numerical traces in the discrete $L^2$ norm. In addition, superconvergence of order $k+2$ and $k+1$ are obtained for the error and its derivative at generalized Radau points. All theoretical findings are confirmed by numerical experiments.
In this paper, we present a unified analysis of the superconvergence property for a large class of mixed discontinuous Galerkin methods. This analysis applies to both the Poisson equation and linear elasticity problems with symmetric stress formulati
In this paper, we provide a framework of designing the local discontinuous Galerkin scheme for integral fractional Laplacian $(-Delta)^{s}$ with $sin(0,1)$ in two dimensions. We theoretically prove and numerically verify the numerical stability and c
In this paper, we will develop a class of high order asymptotic preserving (AP) discontinuous Galerkin (DG) methods for nonlinear time-dependent gray radiative transfer equations (GRTEs). Inspired by the work cite{Peng2020stability}, in which stabili
In this article, using the weighted discrete least-squares, we propose a patch reconstruction finite element space with only one degree of freedom per element. As the approximation space, it is applied to the discontinuous Galerkin methods with the u
In this paper, we develop an oscillation free local discontinuous Galerkin (OFLDG) method for solving nonlinear degenerate parabolic equations. Following the idea of our recent work [J. Lu, Y. Liu, and C.-W. Shu, SIAM J. Numer. Anal. 59(2021), pp. 12