ﻻ يوجد ملخص باللغة العربية
The objective is to prove the asynchronous exponential growth of the growth-fragmentation equation in large weighted $L^1$ spaces and under general assumptions on the coefficients. The key argument is the creation of moments for the solutions to the Cauchy problem, resulting from the unboundedness of the total fragmentation rate. It allows us to prove the quasi-compactness of the associated (rescaled) semigroup, which in turn provides the exponential convergence toward the projector on the Perron eigenfunction.
We are interested in the large time behavior of the solutions to the growth-fragmentation equation. We work in the space of integrable functions weighted with the principal dual eigenfunction of the growth-fragmentation operator. This space is the la
We give here an explicit formula for the following critical case of the growth-fragmentation equation $$frac{partial}{partial t} u(t, x) + frac{partial}{partial x} (gxu(t, x)) + bu(t, x) = balpha^2 u(t, alpha x), qquad u(0, x) = u_0 (x),$$ for some c
We consider the self-similar fragmentation equation with a superquadratic fragmentation rate and provide a quantitative estimate of the spectral gap.
We consider the fragmentation equation $dfrac{partial}{partial t}f (t, x) = --B(x)f (t, x) + int_{ y=x}^{ y=infty} k(y, x)B(y)f (t, y)dy,$ and address the question of estimating the fragmentation parameters-i.e. the division rate $B(x)$ and the fragm
We prove the growth rate of global solutions of the equation $u_t=Delta u-u^{- u}$ in $R^ntimes (0,infty)$, $u(x,0)=u_0>0$ in $R^n$, where $ u>0$ is a constant. More precisely for any $0<u_0in C(R^n)$ satisfying $A_1(1+|x|^2)^{alpha_1}le u_0le A_2(1+