ترغب بنشر مسار تعليمي؟ اضغط هنا

Explicit Solution and Fine Asymptotics for a Critical Growth-Fragmentation Equation

62   0   0.0 ( 0 )
 نشر من قبل Marie Doumic
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give here an explicit formula for the following critical case of the growth-fragmentation equation $$frac{partial}{partial t} u(t, x) + frac{partial}{partial x} (gxu(t, x)) + bu(t, x) = balpha^2 u(t, alpha x), qquad u(0, x) = u_0 (x),$$ for some constants $g > 0$, $b > 0$ and $alpha > 1$ - the case $alpha = 2$ being the emblematic binary fission case. We discuss the links between this formula and the asymptotic ones previously obtained in (Doumic, Escobedo, Kin. Rel. Mod., 2016), and use them to clarify how periodicity may appear asymptotically.



قيم البحث

اقرأ أيضاً

We are concerned with the long-time behavior of the growth-fragmentation equation. We prove fine estimates on the principal eigenfunctions of the growth-fragmentation operator, giving their first-order behavior close to 0 and $+infty$. Using these es timates we prove a spectral gap result by following the technique in [Caceres, Canizo, Mischler 2011, JMPA], which implies that solutions decay to the equilibrium exponentially fast. The growth and fragmentation coefficients we consider are quite general, essentially only assumed to behave asymptotically like power laws.
90 - Etienne Bernard 2018
The objective is to prove the asynchronous exponential growth of the growth-fragmentation equation in large weighted $L^1$ spaces and under general assumptions on the coefficients. The key argument is the creation of moments for the solutions to the Cauchy problem, resulting from the unboundedness of the total fragmentation rate. It allows us to prove the quasi-compactness of the associated (rescaled) semigroup, which in turn provides the exponential convergence toward the projector on the Perron eigenfunction.
307 - Etienne Bernard 2016
We are interested in the large time behavior of the solutions to the growth-fragmentation equation. We work in the space of integrable functions weighted with the principal dual eigenfunction of the growth-fragmentation operator. This space is the la rgest one in which we can expect convergence to the steady size distribution. Although this convergence is known to occur under fairly general conditions on the coefficients of the equation, we prove that it does not happen uniformly with respect to the initial data when the fragmentation rate in bounded. First we get the result for fragmentation kernels which do not form arbitrarily small fragments by taking advantage of the Dyson-Phillips series. Then we extend it to general kernels by using the notion of quasi-compactness and the fact that it is a topological invariant.
161 - Liming Sun , Juncheng Wei , 2021
We construct a radially smooth positive ancient solution for energy critical semi-linear heat equation in $mathbb{R}^n$, $ngeq 7$. It blows up at the origin with the profile of multiple Talenti bubbles in the backward time infinity.
In this paper, we study the long-time dynamics and stability properties of the sine-Gordon equation $$f_{tt}-f_{xx}+sin f=0.$$ Firstly, we use the nonlinear steepest descent for Riemann-Hilbert problems to compute the long-time asymptotics of the sol utions to the sine-Gordon equation whose initial condition belongs to some weighted Sobolev spaces. Secondly, we study the asymptotic stability of the sine-Gordon equation. It is known that the obstruction to the asymptotic stability of the sine-Gordon equation in the energy space is the existence of small breathers which is also closely related to the emergence of wobbling kinks. Combining the long-time asymptotics and a refined approximation argument, we analyze the asymptotic stability properties of the sine-Gordon equation in weighted energy spaces. Our stability analysis gives a criterion for the weight which is sharp up to the endpoint so that the asymptotic stability holds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا