ﻻ يوجد ملخص باللغة العربية
We give here an explicit formula for the following critical case of the growth-fragmentation equation $$frac{partial}{partial t} u(t, x) + frac{partial}{partial x} (gxu(t, x)) + bu(t, x) = balpha^2 u(t, alpha x), qquad u(0, x) = u_0 (x),$$ for some constants $g > 0$, $b > 0$ and $alpha > 1$ - the case $alpha = 2$ being the emblematic binary fission case. We discuss the links between this formula and the asymptotic ones previously obtained in (Doumic, Escobedo, Kin. Rel. Mod., 2016), and use them to clarify how periodicity may appear asymptotically.
We are concerned with the long-time behavior of the growth-fragmentation equation. We prove fine estimates on the principal eigenfunctions of the growth-fragmentation operator, giving their first-order behavior close to 0 and $+infty$. Using these es
The objective is to prove the asynchronous exponential growth of the growth-fragmentation equation in large weighted $L^1$ spaces and under general assumptions on the coefficients. The key argument is the creation of moments for the solutions to the
We are interested in the large time behavior of the solutions to the growth-fragmentation equation. We work in the space of integrable functions weighted with the principal dual eigenfunction of the growth-fragmentation operator. This space is the la
We construct a radially smooth positive ancient solution for energy critical semi-linear heat equation in $mathbb{R}^n$, $ngeq 7$. It blows up at the origin with the profile of multiple Talenti bubbles in the backward time infinity.
In this paper, we study the long-time dynamics and stability properties of the sine-Gordon equation $$f_{tt}-f_{xx}+sin f=0.$$ Firstly, we use the nonlinear steepest descent for Riemann-Hilbert problems to compute the long-time asymptotics of the sol