ﻻ يوجد ملخص باللغة العربية
We consider the fragmentation equation $dfrac{partial}{partial t}f (t, x) = --B(x)f (t, x) + int_{ y=x}^{ y=infty} k(y, x)B(y)f (t, y)dy,$ and address the question of estimating the fragmentation parameters-i.e. the division rate $B(x)$ and the fragmentation kernel $k(y, x)$-from measurements of the size distribution $f (t, $times$)$ at various times. This is a natural question for any application where the sizes of the particles are measured experimentally whereas the fragmentation rates are unknown, see for instance (Xue, Radford, Biophys. Journal, 2013) for amyloid fibril breakage. Under the assumption of a polynomial division rate $B(x) = alpha x^{gamma}$ and a self-similar fragmentation kernel $k(y, x) = frac{1}{y} k_0 (x/ y)$, we use the asymptotic behaviour proved in (Escobedo, Mischler, Rodriguez-Ricard, Ann. IHP, 2004) to obtain uniqueness of the triplet $(alpha, gamma, k _0)$ and a representation formula for $k_0$. To invert this formula, one of the delicate points is to prove that the Mellin transform of the asymptotic profile never vanishes, what we do through the use of the Cauchy integral.
We are interested in the large time behavior of the solutions to the growth-fragmentation equation. We work in the space of integrable functions weighted with the principal dual eigenfunction of the growth-fragmentation operator. This space is the la
The objective is to prove the asynchronous exponential growth of the growth-fragmentation equation in large weighted $L^1$ spaces and under general assumptions on the coefficients. The key argument is the creation of moments for the solutions to the
Is it possible to estimate the dependence of a growing and dividing population on a given trait in the case where this trait is not directly accessible by experimental measurements, but making use of measurements of another variable? This article adr
We consider the self-similar fragmentation equation with a superquadratic fragmentation rate and provide a quantitative estimate of the spectral gap.
Let $ngeq 3$, $alpha$, $betainmathbb{R}$, and let $v$ be a solution $Delta v+alpha e^v+beta xcdot abla e^v=0$ in $mathbb{R}^n$, which satisfies the conditions $lim_{Rtoinfty}frac{1}{log R}int_{1}^{R}rho^{1-n} (int_{B_{rho}}e^v,dx)drhoin (0,infty)$ an