ﻻ يوجد ملخص باللغة العربية
In this paper we consider two variants of the Secretary problem: The Best-or-Worst and the Postdoc problems. We extend previous work by considering that the number of objects is not known and follows either a discrete Uniform distribution $mathcal{U}[1,n]$ or a Poisson distribution $mathcal{P}(lambda)$. We show that in any case the optimal strategy is a threshold strategy, we provide the optimal cutoff values and the asymptotic probabilities of success. We also put our results in relation with closely related work.
We consider two variants of the secretary problem, theemph{ Best-or-Worst} and the emph{Postdoc} problems, which are closely related. First, we prove that both variants, in their standard form with binary payoff 1 or 0, share the same optimal stoppin
We compute the best constant in the Khintchine inequality under assumption that the sum of Rademacher random variables is zero.
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Ko
A t by n random matrix A is formed by sampling n independent random column vectors, each containing t components. The random Gram matrix of size n, G_n, contains the dot products between all pairs of column vectors in the randomly generated matrix A;
In this paper we study the impact of random exponential edge weights on the distances in a random graph and, in particular, on its diameter. Our main result consists of a precise asymptotic expression for the maximal weight of the shortest weight pat