ﻻ يوجد ملخص باللغة العربية
In this paper we study the impact of random exponential edge weights on the distances in a random graph and, in particular, on its diameter. Our main result consists of a precise asymptotic expression for the maximal weight of the shortest weight paths between all vertices (the weighted diameter) of sparse random graphs, when the edge weights are i.i.d. exponential random variables.
For each $n ge 1$, let $mathrm{d}^n=(d^{n}(i),1 le i le n)$ be a sequence of positive integers with even sum $sum_{i=1}^n d^n(i) ge 2n$. Let $(G_n,T_n,Gamma_n)$ be uniformly distributed over the set of simple graphs $G_n$ with degree sequence $mathrm
We consider the spectral gap of a uniformly chosen random $(d_1,d_2)$-biregular bipartite graph $G$ with $|V_1|=n, |V_2|=m$, where $d_1,d_2$ could possibly grow with $n$ and $m$. Let $A$ be the adjacency matrix of $G$. Under the assumption that $d_1g
We study the spectrum of a random multigraph with a degree sequence ${bf D}_n=(D_i)_{i=1}^n$ and average degree $1 ll omega_n ll n$, generated by the configuration model, and also the spectrum of the analogous random simple graph. We show that, when
A bootstrap percolation process on a graph G is an infection process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round every uninfected node which has at least r infected neighbours becomes infected
We compute the eigenvalue fluctuations of uniformly distributed random biregular bipartite graphs with fixed and growing degrees for a large class of analytic functions. As a key step in the proof, we obtain a total variation distance bound for the P