ﻻ يوجد ملخص باللغة العربية
We investigate main properties and mutual relations of the so-called A and B-metrics with any value of the cosmological constant. In particular, we explicitly show that both the AII and BI-metrics are, in fact, the famous Schwarzschild-(anti-)de Sitter spacetime (that is the AI-metric) boosted to superluminal speed. Together they form the complete gravitational field of a tachyon in Minkowski or (anti-)de Sitter universe. The boundary separating the AII and BI regions is the Mach-Cherenkov shockwave on which the curvature is unbounded. We analyze various geometric features of such spacetimes, we provide their natural physical interpretation, and we visualize them using convenient background coordinates and embeddings.
We present and describe an exact solution of Einsteins equations which represents a snapping cosmic string in a vacuum background with a cosmological constant $Lambda$. The snapping of the string generates an impulsive spherical gravitational wave wh
The construction of exact linearized solutions to the Einstein equations within the Bondi-Sachs formalism is extended to the case of linearization about de Sitter spacetime. The gravitational wave field measured by distant observers is constructed, l
We construct rotating boson stars in (4+1)-dimensional asymptotically Anti-de Sitter space-time (aAdS) with two equal angular momenta that are composed out of a massive and self-interacting scalar field. These solutions possess a single Killing vecto
We study the dynamics of a spherically symmetric thin shell of perfect fluid embedded in d-dimensional Anti-de Sitter space-time. In global coordinates, besides collapsing solutions, oscillating solutions are found where the shell bounces back and fo
The dispersion relation of de Sitter special relativity is obtained in a simple and compact form, which is formally similar to the dispersion relation of ordinary special relativity. It is manifestly invariant under change of scale of mass, energy an