ﻻ يوجد ملخص باللغة العربية
The construction of exact linearized solutions to the Einstein equations within the Bondi-Sachs formalism is extended to the case of linearization about de Sitter spacetime. The gravitational wave field measured by distant observers is constructed, leading to a determination of the energy measured by such observers. It is found that gravitational wave energy conservation does not normally apply to inertial observers, but that it can be formulated for a class of accelerated observers, i.e. with worldlines that are timelike but not geodesic.
We present and describe an exact solution of Einsteins equations which represents a snapping cosmic string in a vacuum background with a cosmological constant $Lambda$. The snapping of the string generates an impulsive spherical gravitational wave wh
Gravitational waves are considered as metric perturbations about a curved background metric, rather than the flat Minkowski metric since several situations of physical interest can be discussed by this generalization. In this case, when the de Donder
We give in this paper an explicit construction of the covariant quantization of the rank-two massless tensor field on de Sitter space (linear covariant quantum gravity on a de Sitter background). The main ingredient of the construction is an indecomp
The Gupta-Bleuler triplet for vector-spinor gauge field is presented in de Sitter ambient space formalism. The invariant space of field equation solutions is obtained with respect to an indecomposable representation of the de Sitter group. By using t
In the present work the massless vector field in the de Sitter (dS) space has been quantized. Massless is used here by reference to conformal invariance and propagation on the dS light-cone whereas massive refers to those dS fields which contract at