ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the network power minimization problem in a downlink cloud radio access network (C-RAN), taking into account the power consumed at the baseband unit (BBU) for computation and the power consumed at the remote radio heads and fronthaul links for transmission. The power minimization problem for transmission is a fast time-scale issue whereas the power minimization problem for computation is a slow time-scale issue. Therefore, the joint network power minimization problem is a mixed time-scale problem. To tackle the time-scale challenge, we introduce large system analysis to turn the original fast time-scale problem into a slow time-scale one that only depends on the statistical channel information. In addition, we propose a bound improving branch-and-bound algorithm and a combinational algorithm to find the optimal and suboptimal solutions to the power minimization problem for computation, respectively, and propose an iterative coordinate descent algorithm to find the solutions to the power minimization problem for transmission. Finally, a distributed algorithm based on hierarchical decomposition is proposed to solve the joint network power minimization problem. In summary, this work provides a framework to investigate how execution efficiency and computing capability at BBU as well as delay constraint of tasks can affect the network power minimization problem in C-RANs.
Mobile-edge computing (MEC) has emerged as a prominent technique to provide mobile services with high computation requirement, by migrating the computation-intensive tasks from the mobile devices to the nearby MEC servers. To reduce the execution lat
The Cloud-Radio Access Network (C-RAN) cellular architecture relies on the transfer of complex baseband signals to and from a central unit (CU) over digital fronthaul links to enable the virtualization of the baseband processing functionalities of di
Millimeter wave (mmWave) communication systems using adaptive-resolution analog-to-digital converters (RADCs) have recently drawn considerable interests from the research community as benefit of their high energy efficiency and low implementation cos
This paper considers the unavailability of complete channel state information (CSI) in ultra-dense cloud radio access networks (C-RANs). The user-centric cluster is adopted to reduce the computational complexity, while the incomplete CSI is considere
Spectrum pooling allows multiple operators, or tenants, to share the same frequency bands. This work studies the optimization of spectrum pooling for the downlink of a multi-tenant Cloud Radio Access Network (C-RAN) system in the presence of inter-te