ﻻ يوجد ملخص باللغة العربية
Spectrum pooling allows multiple operators, or tenants, to share the same frequency bands. This work studies the optimization of spectrum pooling for the downlink of a multi-tenant Cloud Radio Access Network (C-RAN) system in the presence of inter-tenant privacy constraints. The spectrum available for downlink transmission is partitioned into private and shared subbands, and the participating operators cooperate to serve the user equipments (UEs) on the shared subband. The network of each operator consists of a cloud processor (CP) that is connected to proprietary radio units (RUs) by means of finite-capacity fronthaul links. In order to enable interoperator cooperation, the CPs of the participating operators are also connected by finite-capacity backhaul links. Inter-operator cooperation may hence result in loss of privacy. Fronthaul and backhaul links are used to transfer quantized baseband signals. Standard quantization is considered first. Then, a novel approach based on the idea of correlating quantization noise signals across RUs of different operators is proposed to control the trade-off between distortion at UEs and inter-operator privacy. The problem of optimizing the bandwidth allocation, precoding, and fronthaul/backhaul compression strategies is tackled under constraints on backhaul and fronthaul capacity, as well as on per-RU transmit power and inter-operator privacy. For both cases, the optimization problems are tackled using the concave convex procedure (CCCP), and extensive numerical results are provided.
The Cloud-Radio Access Network (C-RAN) cellular architecture relies on the transfer of complex baseband signals to and from a central unit (CU) over digital fronthaul links to enable the virtualization of the baseband processing functionalities of di
The downlink of symmetric Cloud Radio Access Networks (C-RANs) with multiple relays and a single receiver is studied. Lower and upper bounds are derived on the capacity. The lower bound is achieved by Martons coding which facilitates dependence among
In this paper, we consider the network power minimization problem in a downlink cloud radio access network (C-RAN), taking into account the power consumed at the baseband unit (BBU) for computation and the power consumed at the remote radio heads and
Towards next generation communications, Energy Efficiency (EE) attracts lots of attentions nowadays. Some innovative techniques have been proposed in prior literatures, especially the sleep mechanism of base station (BS). Yet how to sleep and when to
We consider a MIMO fading broadcast channel where the fading channel coefficients are constant over time-frequency blocks that span a coherent time $times$ a coherence bandwidth. In closed-loop systems, channel state information at transmitter (CSIT)