ترغب بنشر مسار تعليمي؟ اضغط هنا

Parkinsons Disease Assessment from a Wrist-Worn Wearable Sensor in Free-Living Conditions: Deep Ensemble Learning and Visualization

58   0   0.0 ( 0 )
 نشر من قبل Terry Taewoong Um
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Parkinsons Disease (PD) is characterized by disorders in motor function such as freezing of gait, rest tremor, rigidity, and slowed and hyposcaled movements. Medication with dopaminergic medication may alleviate those motor symptoms, however, side-effects may include uncontrolled movements, known as dyskinesia. In this paper, an automatic PD motor-state assessment in free-living conditions is proposed using an accelerometer in a wrist-worn wearable sensor. In particular, an ensemble of convolutional neural networks (CNNs) is applied to capture the large variability of daily-living activities and overcome the dissimilarity between training and test patients due to the inter-patient variability. In addition, class activation map (CAM), a visualization technique for CNNs, is applied for providing an interpretation of the results.



قيم البحث

اقرأ أيضاً

One major challenge in the medication of Parkinsons disease is that the severity of the disease, reflected in the patients motor state, cannot be measured using accessible biomarkers. Therefore, we develop and examine a variety of statistical models to detect the motor state of such patients based on sensor data from a wearable device. We find that deep learning models consistently outperform a classical machine learning model applied on hand-crafted features in this time series classification task. Furthermore, our results suggest that treating this problem as a regression instead of an ordinal regression or a classification task is most appropriate. For consistent model evaluation and training, we adopt the leave-one-subject-out validation scheme to the training of deep learning models. We also employ a class-weighting scheme to successfully mitigate the problem of high multi-class imbalances in this domain. In addition, we propose a customized performance measure that reflects the requirements of the involved medical staff on the model. To solve the problem of limited availability of high quality training data, we propose a transfer learning technique which helps to improve model performance substantially. Our results suggest that deep learning techniques offer a high potential to autonomously detect motor states of patients with Parkinsons disease.
Parkinsons disease (PD) is the second most common neurodegenerative disease worldwide and affects around 1% of the (60+ years old) elderly population in industrial nations. More than 80% of PD patients suffer from motor symptoms, which could be well addressed if a personalized medication schedule and dosage could be administered to them. However, such personalized medication schedule requires a continuous, objective and precise measurement of motor symptoms experienced by the patients during their regular daily activities. In this work, we propose the use of a wrist-worn smart-watch, which is equipped with 3D motion sensors, for estimating the motor fluctuation severity of PD patients in a free-living environment. We introduce a novel network architecture, a post-training scheme and a custom loss function that accounts for label noise to improve the results of our previous work in this domain and to establish a novel benchmark for nine-level PD motor state estimation.
We present the design, implementation, and evaluation of a multi-sensor low-power necklace NeckSense for automatically and unobtrusively capturing fine-grained information about an individuals eating activity and eating episodes, across an entire wak ing-day in a naturalistic setting. The NeckSense fuses and classifies the proximity of the necklace from the chin, the ambient light, the Lean Forward Angle, and the energy signals to determine chewing sequences, a building block of the eating activity. It then clusters the identified chewing sequences to determine eating episodes. We tested NeckSense with 11 obese and 9 non-obese participants across two studies, where we collected more than 470 hours of data in naturalistic setting. Our result demonstrates that NeckSense enables reliable eating-detection for an entire waking-day, even in free-living environments. Overall, our system achieves an F1-score of 81.6% in detecting eating episodes in an exploratory study. Moreover, our system can achieve a F1-score of 77.1% for episodes even in an all-day-around free-living setting. With more than 15.8 hours of battery-life NeckSense will allow researchers and dietitians to better understand natural chewing and eating behaviors, and also enable real-time interventions.
We present a novel dataset and a novel algorithm for recognizing activities of daily living (ADL) from a first-person wearable camera. Handled objects are crucially important for egocentric ADL recognition. For specific examination of objects related to users actions separately from other objects in an environment, many previous works have addressed the detection of handled objects in images captured from head-mounted and chest-mounted cameras. Nevertheless, detecting handled objects is not always easy because they tend to appear small in images. They can be occluded by a users body. As described herein, we mount a camera on a users wrist. A wrist-mounted camera can capture handled objects at a large scale, and thus it enables us to skip object detection process. To compare a wrist-mounted camera and a head-mounted camera, we also develop a novel and publicly available dataset that includes videos and annotations of daily activities captured simultaneously by both cameras. Additionally, we propose a discriminative video representation that retains spatial and temporal information after encoding frame descriptors extracted by Convolutional Neural Networks (CNN).
Chest X-rays (CXRs) are among the most commonly used medical image modalities. They are mostly used for screening, and an indication of disease typically results in subsequent tests. As this is mostly a screening test used to rule out chest abnormali ties, the requesting clinicians are often interested in whether a CXR is normal or not. A machine learning algorithm that can accurately screen out even a small proportion of the real normal exams out of all requested CXRs would be highly beneficial in reducing the workload for radiologists. In this work, we report a deep neural network trained for classifying CXRs with the goal of identifying a large number of normal (disease-free) images without risking the discharge of sick patients. We use an ImageNet-pretrained Inception-ResNet-v2 model to provide the image features, which are further used to train a model on CXRs labelled by expert radiologists. The probability threshold for classification is optimized for 100% precision for the normal class, ensuring no sick patients are released. At this threshold we report an average recall of 50%. This means that the proposed solution has the potential to cut in half the number of disease-free CXRs examined by radiologists, without risking the discharge of sick patients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا