ﻻ يوجد ملخص باللغة العربية
Parkinsons disease (PD) is the second most common neurodegenerative disease worldwide and affects around 1% of the (60+ years old) elderly population in industrial nations. More than 80% of PD patients suffer from motor symptoms, which could be well addressed if a personalized medication schedule and dosage could be administered to them. However, such personalized medication schedule requires a continuous, objective and precise measurement of motor symptoms experienced by the patients during their regular daily activities. In this work, we propose the use of a wrist-worn smart-watch, which is equipped with 3D motion sensors, for estimating the motor fluctuation severity of PD patients in a free-living environment. We introduce a novel network architecture, a post-training scheme and a custom loss function that accounts for label noise to improve the results of our previous work in this domain and to establish a novel benchmark for nine-level PD motor state estimation.
One major challenge in the medication of Parkinsons disease is that the severity of the disease, reflected in the patients motor state, cannot be measured using accessible biomarkers. Therefore, we develop and examine a variety of statistical models
Parkinsons disease (PD) is a progressive neurological disorder primarily affecting motor function resulting in tremor at rest, rigidity, bradykinesia, and postural instability. The physical severity of PD impairments can be quantified through the Mov
The study reports the performance of Parkinsons disease (PD) patients to operate Motor-Imagery based Brain-Computer Interface (MI-BCI) and compares three selected pre-processing and classification approaches. The experiment was conducted on 7 PD pati
Over the years motor deficit in Parkinsons Disease (PD) patients was largely studied, however, no consistent pattern of relations between quantitative electroencephalography (qEEG) and motor scales emerged. There is a general lack of information on t
Motor-Imagery based BCI (MI-BCI) neurorehabilitation can improve locomotor ability and reduce the deficit symptoms in Parkinsons Disease patients. Advanced Motor-Imagery BCI methods are needed to overcome the accuracy and time-related MI BCI calibrat