ﻻ يوجد ملخص باللغة العربية
Chest X-rays (CXRs) are among the most commonly used medical image modalities. They are mostly used for screening, and an indication of disease typically results in subsequent tests. As this is mostly a screening test used to rule out chest abnormalities, the requesting clinicians are often interested in whether a CXR is normal or not. A machine learning algorithm that can accurately screen out even a small proportion of the real normal exams out of all requested CXRs would be highly beneficial in reducing the workload for radiologists. In this work, we report a deep neural network trained for classifying CXRs with the goal of identifying a large number of normal (disease-free) images without risking the discharge of sick patients. We use an ImageNet-pretrained Inception-ResNet-v2 model to provide the image features, which are further used to train a model on CXRs labelled by expert radiologists. The probability threshold for classification is optimized for 100% precision for the normal class, ensuring no sick patients are released. At this threshold we report an average recall of 50%. This means that the proposed solution has the potential to cut in half the number of disease-free CXRs examined by radiologists, without risking the discharge of sick patients.
Thoracic diseases are very serious health problems that plague a large number of people. Chest X-ray is currently one of the most popular methods to diagnose thoracic diseases, playing an important role in the healthcare workflow. However, reading th
The COVID-19 pandemic is causing a major outbreak in more than 150 countries around the world, having a severe impact on the health and life of many people globally. One of the crucial step in fighting COVID-19 is the ability to detect the infected p
Deep learning approaches have demonstrated remarkable progress in automatic Chest X-ray analysis. The data-driven feature of deep models requires training data to cover a large distribution. Therefore, it is substantial to integrate knowledge from mu
We systematically evaluate the performance of deep learning models in the presence of diseases not labeled for or present during training. First, we evaluate whether deep learning models trained on a subset of diseases (seen diseases) can detect the
We propose and demonstrate machine learning algorithms to assess the severity of pulmonary edema in chest x-ray images of congestive heart failure patients. Accurate assessment of pulmonary edema in heart failure is critical when making treatment and