ﻻ يوجد ملخص باللغة العربية
The fused lasso, also known as total-variation denoising, is a locally-adaptive function estimator over a regular grid of design points. In this paper, we extend the fused lasso to settings in which the points do not occur on a regular grid, leading to an approach for non-parametric regression. This approach, which we call the $K$-nearest neighbors ($K$-NN) fused lasso, involves (i) computing the $K$-NN graph of the design points; and (ii) performing the fused lasso over this $K$-NN graph. We show that this procedure has a number of theoretical advantages over competing approaches: specifically, it inherits local adaptivity from its connection to the fused lasso, and it inherits manifold adaptivity from its connection to the $K$-NN approach. We show that excellent results are obtained in a simulation study and on an application to flu data. For completeness, we also study an estimator that makes use of an $epsilon$-graph rather than a $K$-NN graph, and contrast this with the $K$-NN fused lasso.
Among the most popular variable selection procedures in high-dimensional regression, Lasso provides a solution path to rank the variables and determines a cut-off position on the path to select variables and estimate coefficients. In this paper, we c
Distributed data naturally arise in scenarios involving multiple sources of observations, each stored at a different location. Directly pooling all the data together is often prohibited due to limited bandwidth and storage, or due to privacy protocol
The application of the lasso is espoused in high-dimensional settings where only a small number of the regression coefficients are believed to be nonzero. Moreover, statistical properties of high-dimensional lasso estimators are often proved under th
In ordinary quantile regression, quantiles of different order are estimated one at a time. An alternative approach, which is referred to as quantile regression coefficients modeling (QRCM), is to model quantile regression coefficients as parametric f
Inverse probability weighted estimators are the oldest and potentially most commonly used class of procedures for the estimation of causal effects. By adjusting for selection biases via a weighting mechanism, these procedures estimate an effect of in