ترغب بنشر مسار تعليمي؟ اضغط هنا

Parametric Modeling of Quantile Regression Coefficient Functions with Longitudinal Data

134   0   0.0 ( 0 )
 نشر من قبل Ivan Fernandez-Val
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In ordinary quantile regression, quantiles of different order are estimated one at a time. An alternative approach, which is referred to as quantile regression coefficients modeling (QRCM), is to model quantile regression coefficients as parametric functions of the order of the quantile. In this paper, we describe how the QRCM paradigm can be applied to longitudinal data. We introduce a two-level quantile function, in which two different quantile regression models are used to describe the (conditional) distribution of the within-subject response and that of the individual effects. We propose a novel type of penalized fixed-effects estimator, and discuss its advantages over standard methods based on $ell_1$ and $ell_2$ penalization. We provide model identifiability conditions, derive asymptotic properties, describe goodness-of-fit measures and model selection criteria, present simulation results, and discuss an application. The proposed method has been implemented in the R package qrcm.



قيم البحث

اقرأ أيضاً

179 - Takuya Ishihara 2020
In this study, we develop a novel estimation method of the quantile treatment effects (QTE) under the rank invariance and rank stationarity assumptions. Ishihara (2020) explores identification of the nonseparable panel data model under these assumpti ons and propose a parametric estimation based on the minimum distance method. However, the minimum distance estimation using this process is computationally demanding when the dimensionality of covariates is large. To overcome this problem, we propose a two-step estimation method based on the quantile regression and minimum distance method. We then show consistency and asymptotic normality of our estimator. Monte Carlo studies indicate that our estimator performs well in finite samples. Last, we present two empirical illustrations, to estimate the distributional effects of insurance provision on household production and of TV watching on child cognitive development.
In this paper, we develop a new censored quantile instrumental variable (CQIV) estimator and describe its properties and computation. The CQIV estimator combines Powell (1986) censored quantile regression (CQR) to deal with censoring, with a control variable approach to incorporate endogenous regressors. The CQIV estimator is obtained in two stages that are non-additive in the unobservables. The first stage estimates a non-additive model with infinite dimensional parameters for the control variable, such as a quantile or distribution regression model. The second stage estimates a non-additive censored quantile regression model for the response variable of interest, including the estimated control variable to deal with endogeneity. For computation, we extend the algorithm for CQR developed by Chernozhukov and Hong (2002) to incorporate the estimation of the control variable. We give generic regularity conditions for asymptotic normality of the CQIV estimator and for the validity of resampling methods to approximate its asymptotic distribution. We verify these conditions for quantile and distribution regression estimation of the control variable. Our analysis covers two-stage (uncensored) quantile regression with non-additive first stage as an important special case. We illustrate the computation and applicability of the CQIV estimator with a Monte-Carlo numerical example and an empirical application on estimation of Engel curves for alcohol.
In this paper, we consider a high-dimensional quantile regression model where the sparsity structure may differ between two sub-populations. We develop $ell_1$-penalized estimators of both regression coefficients and the threshold parameter. Our pena lized estimators not only select covariates but also discriminate between a model with homogeneous sparsity and a model with a change point. As a result, it is not necessary to know or pretest whether the change point is present, or where it occurs. Our estimator of the change point achieves an oracle property in the sense that its asymptotic distribution is the same as if the unknown active sets of regression coefficients were known. Importantly, we establish this oracle property without a perfect covariate selection, thereby avoiding the need for the minimum level condition on the signals of active covariates. Dealing with high-dimensional quantile regression with an unknown change point calls for a new proof technique since the quantile loss function is non-smooth and furthermore the corresponding objective function is non-convex with respect to the change point. The technique developed in this paper is applicable to a general M-estimation framework with a change point, which may be of independent interest. The proposed methods are then illustrated via Monte Carlo experiments and an application to tipping in the dynamics of racial segregation.
Progression of chronic disease is often manifested by repeated occurrences of disease-related events over time. Delineating the heterogeneity in the risk of such recurrent events can provide valuable scientific insight for guiding customized disease management. In this paper, we present a new modeling framework for recurrent event data, which renders a flexible and robust characterization of individual multiplicative risk of recurrent event through quantile regression that accommodates both observed covariates and unobservable frailty. The proposed modeling requires no distributional specification of the unobservable frailty, while permitting the exploration of dynamic covariate effects. We develop estimation and inference procedures for the proposed model through a novel adaptation of the principle of conditional score. The asymptotic properties of the proposed estimator, including the uniform consistency and weak convergence, are established. Extensive simulation studies demonstrate satisfactory finite-sample performance of the proposed method. We illustrate the practical utility of the new method via an application to a diabetes clinical trial that explores the risk patterns of hypoglycemia in Type 2 diabetes patients.
183 - Qi Zheng , Limin Peng , Xuming He 2015
Quantile regression has become a valuable tool to analyze heterogeneous covaraite-response associations that are often encountered in practice. The development of quantile regression methodology for high-dimensional covariates primarily focuses on ex amination of model sparsity at a single or multiple quantile levels, which are typically pre-specified ad hoc by the users. The resulting models may be sensitive to the specific choices of the quantile levels, leading to difficulties in interpretation and erosion of confidence in the results. In this article, we propose a new penalization framework for quantile regression in the high-dimensional setting. We employ adaptive L1 penalties, and more importantly, propose a uniform selector of the tuning parameter for a set of quantile levels to avoid some of the potential problems with model selection at individual quantile levels. Our proposed approach achieves consistent shrinkage of regression quantile estimates across a continuous range of quantiles levels, enhancing the flexibility and robustness of the existing penalized quantile regression methods. Our theoretical results include the oracle rate of uniform convergence and weak convergence of the parameter estimators. We also use numerical studies to confirm our theoretical findings and illustrate the practical utility of our proposal
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا