ﻻ يوجد ملخص باللغة العربية
The two-dimensional ($2d$) fully frustrated Planar Rotator model on a square lattice has been the subject of a long controversy due to the simultaneous $Z_2$ and $O(2)$ symmetry existing in the model. The $O(2)$ symmetry being responsible for the Berezinskii - Kosterlitz - Thouless transition ($BKT$) while the $Z_2$ drives an Ising-like transition. There are arguments supporting two possible scenarios, one advocating that the loss of $Ising$ and $BKT$ order take place at the same temperature $T_{t}$ and the other that the $Z_2$ transition occurs at a higher temperature than the $BKT$ one. In the first case an immediate consequence is that this model is in a new universality class. Most of the studies take hand of some order parameter like the stiffness, Binders cumulant or magnetization to obtain the transition temperature. Considering that the transition temperatures are obtained, in general, as an average over the estimates taken about several of those quantities, it is difficult to decide if they are describing the same or slightly separate transitions. In this paper we describe an iterative method based on the knowledge of the complex zeros of the energy probability distribution to study the critical behavior of the system. The method is general with advantages over most conventional techniques since it does not need to identify any order parameter emph{a priori}. The critical temperature and exponents can be obtained with good precision. We apply the method to study the Fully Frustrated Planar Rotator ($PR$) and the Anisotropic Heisenberg ($XY$) models in two dimensions. We show that both models are in a new universality class with $T_{PR}=0.45286(32)$ and $T_{XY}=0.36916(16)$ and the transition exponent $ u=0.824(30)$ ($frac{1}{ u}=1.22(4)$).
We study the ordering of the spin and the chirality in the fully frustrated XY model on a square lattice by extensive Monte Carlo simulations. Our results indicate unambiguously that the spin and the chirality exhibit separate phase transitions at tw
This paper has been withdrawn by the authors due to a possible inconsistency in the program code.
A two state sandpile model with preferential sand distribution is developed and studied numerically on scale free networks with power-law degree ($k$) distribution, {em i.e.}: $P_ksim k^{-alpha}$. In this model, upon toppling of a critical node sand
We consider the possibility that the discrete long-range ordered states of Er2Ti2O7 are selected energetically at the mean field level as an alternative scenario that suggests selection via thermal fluctuations. We show that nearest neighbour exchang
Monte Carlo simulations using the newly proposed Wang-Landau algorithm together with the broad histogram relation are performed to study the antiferromagnetic six-state clock model on the triangular lattice, which is fully frustrated. We confirm the