ﻻ يوجد ملخص باللغة العربية
We consider the possibility that the discrete long-range ordered states of Er2Ti2O7 are selected energetically at the mean field level as an alternative scenario that suggests selection via thermal fluctuations. We show that nearest neighbour exchange interactions alone are not sufficient for this purpose, but that anisotropies arising from excited single ion crystal field states in Er2Ti2O7, together with appropriate anisotropic exchange interactions, can produce the required long range order. However, the effect of the single ion anisotropies is rather weak so we expect thermal or quantum fluctuations, in some guise, to be ultimately important in this material. We reproduce recent experimental results for the variation of magnetic Bragg peak intensities as a function of magnetic field.
Examples of materials where an order by disorder mechanism is at play to select a particular ground state are scarce. It has recently been proposed, however, that the antiferromagnetic XY pyrochlore Er2Ti2O7, reveals a most convincing case of this me
The two-dimensional ($2d$) fully frustrated Planar Rotator model on a square lattice has been the subject of a long controversy due to the simultaneous $Z_2$ and $O(2)$ symmetry existing in the model. The $O(2)$ symmetry being responsible for the Ber
The recent determination of a robust spin Hamiltonian for the anti-ferromagnetic XY pyrochlore Er2Ti2O7 reveals a most convincing case of the order by quantum disorder (ObQD) mechanism for ground state selection. This mechanism relies on quantum fluc
ersn, is considered, together with erti, as a realization of the XY antiferromagnet on the pyrochlore lattice. We present magnetization measurements confirming that ersn, does not order down to 100 mK but exhibits a freezing below 200 mK. Our neutron
We study the ordering of the spin and the chirality in the fully frustrated XY model on a square lattice by extensive Monte Carlo simulations. Our results indicate unambiguously that the spin and the chirality exhibit separate phase transitions at tw