ﻻ يوجد ملخص باللغة العربية
A two state sandpile model with preferential sand distribution is developed and studied numerically on scale free networks with power-law degree ($k$) distribution, {em i.e.}: $P_ksim k^{-alpha}$. In this model, upon toppling of a critical node sand grains are given one to each of the neighbouring nodes with highest and lowest degrees instead of two randomly selected neighbouring nodes as in a stochastic sandpile model. The critical behaviour of the model is determined by characterizing various avalanche properties at the steady state varying the network structure from scale free to random, tuning $alpha$ from $2$ to $5$. The model exhibits mean field scaling on the random networks, $alpha>4$. However, in the scale free regime, $2<alpha<4$, the scaling behaviour of the model not only deviates from the mean-field scaling but also the exponents describing the scaling behaviour are found to decrease continuously as $alpha$ decreases. In this regime, the critical exponents of the present model are found to be different from those of the two state stochastic sandpile model on similar networks. The preferential sand distribution thus has non-trivial effects on the sandpile dynamics which leads the model to a new universality class.
We introduce a network growth model in which the preferential attachment probability includes the fitness vertex and the Euclidean distance between nodes. We grow a planar network around its barycenter. Each new site is fixed in space by obeying a power law distribution.
The two-dimensional ($2d$) fully frustrated Planar Rotator model on a square lattice has been the subject of a long controversy due to the simultaneous $Z_2$ and $O(2)$ symmetry existing in the model. The $O(2)$ symmetry being responsible for the Ber
A new classification of sandpile models into universality classes is presented. On the basis of extensive numerical simulations, in which we measure an extended set of exponents, the Manna two state model [S. S. Manna, J. Phys. A 24, L363 (1991)] is
This paper has been withdrawn by the authors due to a possible inconsistency in the program code.
In the rotational sandpile model, either the clockwise or the anti-clockwise toppling rule is assigned to all the lattice sites. It has all the features of a stochastic sandpile model but belongs to a different universality class than the Manna class