ترغب بنشر مسار تعليمي؟ اضغط هنا

Anatomy of the massive star-forming region S106: The OI 63 micron line observed with GREAT/SOFIA as a versatile diagnostic tool for the evolution of massive stars

78   0   0.0 ( 0 )
 نشر من قبل Nicola Schneider Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N.Schneider




اسأل ChatGPT حول البحث

The central area (40x40) of the bipolar nebula S106 was mapped in the OI line at 63.2 micron with high angular (6) and spectral resolution, using GREAT on board SOFIA. The OI emission distribution is compared to the CO 16-15, CII 158 micron, and CO 11-10 lines, mm-molecular lines, and continuum. It is composed of several velocity components in the range from -30 km/s to 25 km/s. The high-velocity blue- and redshifted emission can be explained as arising from accelerated photodissociated (PDR) gas associated with a dark lane close to the massive binary system S106 IR, and from shocks caused by the stellar wind and/or a disk--envelope interaction. At velocities from -9 to -4 km/s and 0.5 to 8 km/s line wings are observed that we attribute to cooling in PDRs created by the ionizing radiation impinging on the cavity walls. The bulk velocity range is dominated by PDR emission from the clumpy molecular cloud. Modelling the emission in the different velocity ranges with the KOSMA-tau code constrains a radiation field chi of a few times 10^4 and densities n of a few times 10^4 cm^-3. Considering self-absorption of the OI line results in higher densities (up to 10^6 cm^-3) only for the gas component seen at high blue- and red velocities. The dark lane has a mass of 275 Msun and shows a velocity difference of 1.4 km/s along its projected length of 1 pc, determined from H13CO+ 1-0 mapping. It can be interpreted as a massive accretion flow, or the remains of it, linked to S106 IR/FIR. The most likely explanation is that the binary system is at a stage of its evolution where gas accretion is counteracted by the stellar winds and radiation, leading to the very complex observed spatial and kinematic emission distribution of the various tracers.



قيم البحث

اقرأ أيضاً

In molecular outflows from forming low-mass protostars, most oxygen is expected to be locked up in water. However, Herschel observations have shown that typically an order of magnitude or more of the oxygen is still unaccounted for. To test if the ox ygen is instead in atomic form, SOFIA-GREAT observed the R1 position of the bright molecular outflow from NGC1333-IRAS4A. The [OI] 63 um line is detected and spectrally resolved. From an intensity peak at +15 km/s, the intensity decreases until +50 km/s. The profile is similar to that of high-velocity (HV) H2O and CO 16-15, the latter observed simultaneously with [OI]. A radiative transfer analysis suggests that ~15% of the oxygen is in atomic form toward this shock position. The CO abundance is inferred to be ~10^-4 by a similar analysis, suggesting that this is the dominant oxygen carrier in the HV component. These results demonstrate that a large portion of the observed [OI] emission is part of the outflow. Further observations are required to verify whether this is a general trend.
We observed radio recombination lines (RRLs) toward the W51 molecular cloud complex, one of the most active star forming regions in our Galaxy. The UV radiation from young massive stars ionizes gas surrounding them to produce HII regions. Observation s of the W51 IRS1 HII region were made with the Arecibo 305 m telescope. Of the full 1-10 GHz database, we have analyzed the observations between 4.5 and 5 GHz here. The steps involved in the analysis were: a) bandpass calibration using on-source/off-source observations; b) flux density calibration; c) removing spectral baselines due to errors in bandpass calibration and d) Gaussian fitting of the detected lines. We detected alpha, beta and gamma transitions of hydrogen and alpha transitions of helium. We used the observed line parameters to 1) measure the source velocity (56.6 $pm$ 0.3 km s$^{-1}$) with respect to the Local Standard of Rest (LSR); 2) estimate the electron temperature (8500 $pm$ 1800 K) of the HII region and 3) derive the emission measure (5.4 $pm$ 2.7 $times$ 10$^{6}$ pc cm$^{-6}$) of the ionized gas.
64 - G. Giardino 2004
We present Chandra observations of the massive star-forming region S106, a prominent HII region in Cygnus, associated with an extended molecular cloud and a young cluster. The nebula is excited by a single young massive star located at the center of the molecular cloud and the embedded cluster. The prominence of the cluster in the Chandra observation presented here confirms its youth and allows some of its members to be studied in more detail. We detect X-ray emission from the young massive central source S106 IRS 4, the deeply embedded central object which drives the bipolar nebula with a mass loss rate approximately 1-2 orders of magnitude higher than main sequence stars of comparable luminosity. Still, on the basis of its wind momentum flux the X-ray luminosity of S106 IRS 4 is comparable to the values observed in more evolved (main sequence and giant) massive stars, suggesting that the same process which is responsible for the observed X-ray emission from older massive stars is already at work at these early stages.
We aim at characterizing the large-scale distribution of H2O in G327.3-0.6, a massive star-forming region made of individual objects in different evolutionary phases. We investigate variations of H2O abundance as function of evolution. We present Her schel continuum maps at 89 and 179 $mu$m of the whole region and an APEX map at 350 {mu}m of the IRDC. New spectral HIFI maps toward the IRDC region covering low-energy H2O lines at 987 and 1113 GHz are also presented and combined with HIFI pointed observations of the G327 hot core. We infer the physical properties of the gas through optical depth analysis and radiative transfer modeling. The continuum emission at 89 and 179 {mu}m follows the thermal continuum emission at longer wavelengths, with a peak at the position of the hot core, a secondary peak in the Hii region, and an arch-like layer of hot gas west of the Hii region. The same morphology is observed in the 1113 GHz line, in absorption toward all dust condensations. Optical depths of ~80 and 15 are estimated and correspond to column densities of 10^15 and 2 10^14 cm-2, for the hot core and IRDC position. These values indicate an H2O to H2 ratio of 3 10^-8 toward the hot core; the abundance of H2O does not change along the IRDC with values of some 10^-8. Infall (over ~ 20) is detected toward the hot core position with a rate of 1-1.3 10^-2 M_sun /yr, high enough to overcome the radiation pressure due to the stellar luminosity. The source structure of the hot core region is complex, with a cold outer gas envelope in expansion, situated between the outflow and the observer, extending over 0.32 pc. The outflow is seen face-on and centered away from the hot core. The distribution of H2O along the IRDC is roughly constant with an abundance peak in the more evolved object. These water abundances are in agreement with previous studies in other massive objects and chemical models.
149 - Alwyn Wootten 2009
Using arguments parallel to those used in support of using H2CO as a sensitive probe of temperature and density in molecular clouds, we measured the J=7-6 and J=10-9 transitions of thioformaldehyde (H2CS) in several hot core sources. The goal here wa s to investigate more closely the conditions giving rise to H2CS emission in cloud cores containing young stars by modelling several transitions. The H2CS molecule is a slightly asymmetric rotor, a heavier analogue to H2CO. As in H2CO, transitions occur closely spaced in frequency, though they are substantially separated in energy. Transitions of H2CS originating from the K=0, 1, 2, 3, and 4 ladders in the 230 and 345 GHz windows can productively be used to constrain densities and temperatures. As a first step in developing the use of these transitions as thermometers and densitometers, we surveyed and modeled the emission from well known warm dense cores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا