ﻻ يوجد ملخص باللغة العربية
We observed radio recombination lines (RRLs) toward the W51 molecular cloud complex, one of the most active star forming regions in our Galaxy. The UV radiation from young massive stars ionizes gas surrounding them to produce HII regions. Observations of the W51 IRS1 HII region were made with the Arecibo 305 m telescope. Of the full 1-10 GHz database, we have analyzed the observations between 4.5 and 5 GHz here. The steps involved in the analysis were: a) bandpass calibration using on-source/off-source observations; b) flux density calibration; c) removing spectral baselines due to errors in bandpass calibration and d) Gaussian fitting of the detected lines. We detected alpha, beta and gamma transitions of hydrogen and alpha transitions of helium. We used the observed line parameters to 1) measure the source velocity (56.6 $pm$ 0.3 km s$^{-1}$) with respect to the Local Standard of Rest (LSR); 2) estimate the electron temperature (8500 $pm$ 1800 K) of the HII region and 3) derive the emission measure (5.4 $pm$ 2.7 $times$ 10$^{6}$ pc cm$^{-6}$) of the ionized gas.
We present spectral line mapping observations toward four massive star-forming regions (Cepheus A, DR21S, S76E and G34.26+0.15), with the IRAM 30 meter telescope at 2 mm and 3 mm bands. Totally 396 spectral lines from 51 molecules, one helium recombi
We present high spatial resolution radio and near-infrared hydrogen recombination line observations of the southern massive star-forming region G333.6-0.2. The 3.4-cm continuum peak is found slightly offset from the infrared source. The H90alpha spec
An unbiased spectral line survey toward a solar-type Class 0/I protostar, IRAS04368+2557, in L1527 has been carried out in the 3 mm band with the Nobeyama 45 m telescope. L1527 is known as a warm carbon-chain chemistry (WCCC) source, which harbors ab
We present 109-115 GHz (3 mm) wide-field spectral line observations of 12^CO, 13^CO and C^18O J=1-0 molecular emission and 5.5 and 8.8 GHz (6 and 3 cm) radio continuum emission towards the high-mass star forming complex known as G305. The morphology
We present high angular resolution observations (0.5x0.3) carried out with the Submillimeter Array (SMA) toward the AFGL2591 high-mass star forming region. Our SMA images reveal a clear chemical segregation within the AFGL2591 VLA 3 hot core, where d