ﻻ يوجد ملخص باللغة العربية
A complete knowledge of absolute surface energies with any arbitrary crystal orientation is important for the improvements of semiconductor devices because it determines the equilibrium and nonequilibrium crystal shapes of thin films and nanostructures. It is also crucial in the control of thin film crystal growth and surface effect studies in broad research fields. However, obtaining accurate absolute formation energies is still a huge challenge for the semi-polar surfaces of compound semiconductors. It mainly results from the asymmetry nature of crystal structures and the complicated step morphologies and related reconstructions of these surface configurations. Here we propose a general approach to calculate the absolute formation energies of wurtzite semi-polar surfaces by first-principles calculations, taking GaN as an example. We mainly focused on two commonly seen sets of semi-polar surfaces: a-family (11-2X) and m-family (10-1X). For all the semi-polar surfaces that we have calculated in this paper, the self-consistent accuracy is within 1.5 meV/{AA}^2. Our work fills the last technical gap to fully investigate and understand the shape and morphology of compound semiconductors.
Density functional theory (DFT) calculations are performed to predict the structural, electronic and magnetic properties of electrically neutral or charged few-atomic-layer (AL) oxides whose parent systems are based on polar perovskite $KTaO_{3}$. Th
Interatomic potential models based on machine learning (ML) are rapidly developing as tools for materials simulations. However, because of their flexibility, they require large fitting databases that are normally created with substantial manual selec
The electronic structure of surfaces plays a key role in the properties of quantum devices. However, surfaces are also the most challenging to simulate and engineer. Here, we study the electronic structure of InAs(001), InAs(111), and InSb(110) surfa
We report atomic scale studies of the effect of applied strain and hydrogen environment on the reconstructions of the (105) Si and Ge surfaces. Surface energy calculations for monohydride-terminated (001) and (105) reconstructions reveal that the rec
Orientation-dependent reactivity and band-bending are evidenced upon Ti deposition (1-10 AA) on the polar ZnO(0001)-Zn and ZnO(000$bar{1}$)-O surfaces. At the onset of the Ti deposition, a downward band-bending was observed on ZnO(000$bar{1}$)-O whil