ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting the Structural, Electronic and Magnetic Properties of Few Atomic-layer Polar Perovskite

433   0   0.0 ( 0 )
 نشر من قبل Fanhao Jia
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Density functional theory (DFT) calculations are performed to predict the structural, electronic and magnetic properties of electrically neutral or charged few-atomic-layer (AL) oxides whose parent systems are based on polar perovskite $KTaO_{3}$. Their properties vary greatly with the number of ALs ($n_{AL}$) and the stoichiometric ratio. In the few-AL limit ($n_{AL}leqslant 14$), the even AL (EL) systems with chemical formula $(KTaO_{3})_{n}$ are semiconductors, while the odd AL (OL) systems with formula ($K_{n+1}Ta_{n}O_{3n+1}$ or $K_{n}Ta_{n+1}O_{3n+2}$) are half-metal except for the unique $KTa_{2}O_{5}$ case which is a semiconductor due to the large Peierls distortions. After reaching certain critical thickness ($n_{AL}>14$), the EL systems show ferromagnetic surface states, while ferromagnetism disappears in the OL systems. These predictions from fundamental complexity of polar perovskite when approaching the two-dimensional (2D) limit may be helpful for interpreting experimental observations later.



قيم البحث

اقرأ أيضاً

We report first principle calculations of electronic and mechanical properties of few-layer borophene with the inclusion of interlayer van der Waals (vdW) interaction. The anisotropic metallic behaviors are preserved from monolayer to few-layer struc tures. The energy splitting of bilayer borophene at $Gamma$ point near the Fermi level is about 1.7 eV, much larger than the values (0.5--1 eV) of other layered semiconductors, indicating much stronger vdW interactions in metallic layered borophene. In particular, the critical strains are enhanced by increasing the number of layers, leading to much more flexibility than that of monolayer structure. On the one hand, because of the buckled atomic structures, the out-of-plane negative Poissons ratios are preserved as the layer-number increases. On the other hand, we find that the in-plane negative Poissons ratios disappear in layered borophene, which is very different from puckered black phosphorus. The negative Poissons ratio will recover if we enlarge the interlayer distance to 6.3 $mboxAA$, indicating that the physical origin behind the change of Poissons ratios is the strong interlayer vdW interactions in layered borophene.
GeSe and SnSe monochalcogenide monolayers and bilayers undergo a two-dimensional phase transition from a rectangular unit cell to a square unit cell at a temperature $T_c$ well below the melting point. Its consequences on material properties are stud ied within the framework of Car-Parrinello molecular dynamics and density-functional theory. No in-gap states develop as the structural transition takes place, so that these phase-change materials remain semiconducting below and above $T_c$. As the in-plane lattice transforms from a rectangle onto a square at $T_c$, the electronic, spin, optical, and piezo-electric properties dramatically depart from earlier predictions. Indeed, the $Y-$ and $X-$points in the Brillouin zone become effectively equivalent at $T_c$, leading to a symmetric electronic structure. The spin polarization at the conduction valley edge vanishes, and the hole conductivity must display an anomalous thermal increase at $T_c$. The linear optical absorption band edge must change its polarization as well, making this structural and electronic evolution verifiable by optical means. Much excitement has been drawn by theoretical predictions of giant piezo-electricity and ferroelectricity in these materials, and we estimate a pyroelectric response of about $3times 10^{-12}$ $C/K m$ here. These results uncover the fundamental role of temperature as a control knob for the physical properties of few-layer group-IV monochalcogenides
The electronic and thermoelectric properties of one to four monolayers of MoS$_{2}$, MoSe$_{2}$, WS$_{2}$, and WSe$_{2}$ are calculated. For few layer thicknesses,the near degeneracies of the conduction band $K$ and $Sigma$ valleys and the valence ba nd $Gamma$ and $K$ valleys enhance the n-type and p-type thermoelectric performance. The interlayer hybridization and energy level splitting determine how the number of modes within $k_BT$ of a valley minimum changes with layer thickness. In all cases, the maximum ZT coincides with the greatest near-degeneracy within $k_BT$ of the band edge that results in the sharpest turn-on of the density of modes. The thickness at which this maximum occurs is, in general, not a monolayer. The transition from few layers to bulk is discussed. Effective masses, energy gaps, power-factors, and ZT values are tabulated for all materials and layer thicknesses.
253 - Asish K. Kundu , B. Raveau 2010
Rare earth perovskite cobaltites are increasingly recognized as materials of importance due to rich physics and chemistry in their ordered-disordered structure for the same composition. Apart from colossal magnetoresistance effect, like manganites, t he different forms of cobaltites exhibit interesting phenomena including spin, charge and orbital ordering, electronic phase separation, insulator-metal transition, large thermoelectric power at low temperature. Moreover, the cobaltites which display colossal magnetoresistance effect could be used as read heads in magnetic data storage and also in other applications depending upon their particular properties. The A-site ordereddisordered cobaltites exhibit ferromagnetism and metal-insulator transitions as well as other properties depending on the composition, size of A-site cations and various external factors such as pressure, temperature, magnetic field etc. Ordered cobaltites, having a 112-type layered structure, are also reported to have an effectively stronger electron coupling due to layered A-site cationic ordering. Most importantly for the present article we focus on La-Ba-Co-O based ordered-disordered perovskite phases, which exhibit interesting magnetic and electron transport properties with ferromagnetic transition, TC ~ 177K, and it being the first member of lanthanide series. Zener double exchange mechanism considered to be crucial for understanding basic physics of the ferromagneticmetallic phase, yet does not explain clearly the insulating-type phase. In terms of electron transport the ferromagnetic-metallic or insulating/semiconducting states have been discussed in the present article with different types of hopping model.
First principles study of structural, elastic, and electronic properties of the cubic perovskitetype BaHfO$_3$ has been performed using the plane wave ultrasoft pseudo-potential method based on density functional theory with revised Perdew-Burke-Ernz erhof exchange-correlation functional of the generalized gradient approximation (GGA-RPBE). The calculated equilibrium lattice constant of this compound is in good agreement with the available experimental and theoretical data reported in the literatures. The independent elastic constants (emph{C}$_{11}$, emph{C}$_{12}$, and emph{C}$_{44}$), bulk modules emph{B} and its pressure derivatives $B^{prime}$, compressibility $beta$, shear modulus emph{G}, Youngs modulus emph{Y}, Poissons ratio $ u$, and Lam{e} constants ($mu, lambda$) are obtained and analyzed in comparison with the available theoretical and experimental data for both the singlecrystalline and polycrystalline BaHfO$_3$. The band structure calculations show that BaHfO$_3$ is a indirect bandgap material (R-$Gamma$ = 3.11 eV) derived basically from the occupied O 2emph{p} and unoccupied Hf 5emph{d} states, and it still awaits experimental confirmation. The density of states (total, site-projected, and emph{l}-decomposed) and the bonding charge density calculations make it clear that the covalent bonds exist between the Hf and O atoms and the ionic bonds exist between the Ba atoms and HfO$_3$ ionic groups in BaHfO$_3$. From our calculations, it is shown that BaHfO$_3$ should be promising as a candidate for synthesis and design of superhard materials due to the covalent bonding between the transition metal Hf 5emph{d} and O 2emph{p} states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا