ترغب بنشر مسار تعليمي؟ اضغط هنا

Orientation-dependent chemistry and band-bending of Ti on polar ZnO surfaces

359   0   0.0 ( 0 )
 نشر من قبل Patrizia Borghetti
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Orientation-dependent reactivity and band-bending are evidenced upon Ti deposition (1-10 AA) on the polar ZnO(0001)-Zn and ZnO(000$bar{1}$)-O surfaces. At the onset of the Ti deposition, a downward band-bending was observed on ZnO(000$bar{1}$)-O while no change occurred on ZnO(0001)-Zn. Combining this with the photoemission analysis of the Ti 2p core level and Zn L$_3$(L$_2$)M$_{45}$M$_{45}$ Auger transition, it is established that the Ti/ZnO reaction is of the form Ti + 2 ZnO $rightarrow$ TiO$_2$ + 2 Zn on ZnO(0001)-Zn and Ti + y ZnO $rightarrow$ TiZn$_x$O$_y$ + (y-x) Zn on ZnO(000$bar{1}$)-O. Consistently, upon annealing thicker Ti adlayers, the metallic zinc is removed to leave ZnO(0001)-Zn surfaces covered with TiO$_2$-like phase and ZnO(000$bar{1}$)-O surfaces covered with a defined (Ti, Zn, O) compound. Finally, a difference in the activation temperature between the O-terminated (500 K) and Zn-terminated (700 K) surfaces is observed, which is tentatively explained by different electric fields in the space charge layer at ZnO surfaces.



قيم البحث

اقرأ أيضاً

72 - Jorge Iniguez 2006
We report a first-principles study of the energetics of hydrogen absorption and desorption (i.e. H-vacancy formation) on pure and Ti-doped sodium alanate (NaAlH4) surfaces. We find that the Ti atom facilitates the dissociation of H2 molecules as well as the adsorption of H atoms. In addition, the dopant makes it energetically more favorable to creat H vacancies by saturating Al dangling bonds. Interestingly, our results show that the Ti dopant brings close in energy all the steps presumably involved in the absorption and desorption of hydrogen, thus facilitating both and enhancing the reaction kinetics of the alanates. We also discuss the possibility of using other light transition metals (Sc, V, and Cr) as dopants.
236 - M. Pozzo , D. Alf`e , A. Amieiro 2008
It is well known, both theoretically and experimentally, that alloying MgH$_2$ with transition elements can significantly improve the thermodynamic and kinetic properties for H$_2$ desorption, as well as the H$_2$ intake by Mg bulk. Here we present a density functional theory investigation of hydrogen dissociation and surface diffusion over Ni-doped surface, and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when Ni/Ti are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H$_2$ dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e. faster hydrogenation of the Ni doped Mg sample as opposed to the reference Mg or Ti doped Mg.
The band alignment of semiconductor-metal interfaces plays a vital role in modern electronics, but remains difficult to predict theoretically and measure experimentally. For interfaces with strong band bending a main difficulty originates from the in -built potentials which lead to broadened and shifted band spectra in spectroscopy measurements. In this work we present a method to resolve the band alignment of buried semiconductor-metal interfaces using core level photoemission spectroscopy and self-consistent electronic structure simulations. As a proof of principle we apply the method to a clean in-situ grown InAs(100)/Al interface, a system with a strong in-built band bending. Due to the high signal-to-noise ratio of the core level spectra the proposed methodology can be used on previously inaccessible semiconductor-metal interfaces and support targeted design of novel hybrid devices and form the foundation for a interface parameter database for specified synthesis processes of semiconductor-metal systems.
65 - B. Meyer , Dominik Marx 2002
An extensive theoretical investigation of the nonpolar (10$bar{1}$0) and (11$bar{2}$0) surfaces as well as the polar zinc terminated (0001)--Zn and oxygen terminated (000$bar{1}$)--O surfaces of ZnO is presented. Particular attention is given to the convergence properties of various parameters such as basis set, k--point mesh, slab thickness, or relaxation constraints within LDA and PBE pseudopotential calculations using both plane wave and mixed basis sets. The pros and cons of different approaches to deal with the stability problem of the polar surfaces are discussed. Reliable results for the structural relaxations and the energetics of these surfaces are presented and compared to previous theoretical and experimental data, which are also concisely reviewed and commented.
The uniaxial stress dependence of the band structure and the exciton-polariton transitions in wurtzite ZnO is thoroughly studied using modern first-principles calculations based on the HSE+G0W0 approach, k p modeling using the deformation potential f ramework, and polarized photoluminescence measurements. The ordering of the valence bands [A(G7), B(G9), C(G7)] is found to be robust even for high uniaxial and biaxial strains. Theoretical results for the uniaxial pressure coefficients and splitting rates of the A, B, and C valence bands and their optical transitions are obtained including the effects of the spin-orbit interaction. The excitonic deformation potentials are derived and the stress rates for hydrostatic pressure are determined based on the results for uniaxial and biaxial stress. In addition, the theory for the stress dependence of the exchange interaction and longitudinal-transversal splitting of the exciton-polaritons is developed using the basic exciton functions of the quasi-cubic approximation and taking the interaction between all exciton states into account. It is shown that the consideration of these effects is crucial for an accurate description of the stress dependence of the optical spectra in ZnO. The theoretical results are compared to polarized photoluminescence measurements of different ZnO substrates as function of uniaxial pressure and experimental values reported in the literature demonstrating an excellent agreement with the computed pressure coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا