ﻻ يوجد ملخص باللغة العربية
This paper is concerned with the distributed linear quadratic optimal control problem. In particular, we consider a suboptimal version of the distributed optimal control problem for undirected multi-agent networks. Given a multi-agent system with identical agent dynamics and an associated global quadratic cost functional, our objective is to design suboptimal distributed control laws that guarantee the controlled network to reach consensus and the associated cost to be smaller than an a priori given upper bound. We first analyze the suboptimality for a given linear system and then apply the results to linear multiagent systems. Two design methods are then provided to compute such suboptimal distributed controllers, involving the solution of a single Riccati inequality of dimension equal to the dimension of the agent dynamics, and the smallest nonzero and the largest eigenvalue of the graph Laplacian. Furthermore, we relax the requirement of exact knowledge of the smallest nonzero and largest eigenvalue of the graph Laplacian by using only lower and upper bounds on these eigenvalues. Finally, a simulation example is provided to illustrate our design method.
This paper deals with the distributed $mathcal{H}_2$ optimal control problem for linear multi-agent systems. In particular, we consider a suboptimal version of the distributed $mathcal{H}_2$ optimal control problem. Given a linear multi-agent system
In this paper, we extend the results from Jiao et al. (2019) on distributed linear quadratic control for leaderless multi-agent systems to the case of distributed linear quadratic tracking control for leader-follower multi-agent systems. Given one au
This paper deals with suboptimal distributed H2 control by dynamic output feedback for homogeneous linear multi-agent systems. Given a linear multi-agent system, together with an associated H2 cost functional, the objective is to design dynamic outpu
In this paper we consider the distributed linear quadratic control problem for networks of agents with single integrator dynamics. We first establish a general formulation of the distributed LQ problem and show that the optimal control gain depends o
The linear-quadratic regulator (LQR) is an efficient control method for linear and linearized systems. Typically, LQR is implemented in minimal coordinates (also called generalized or joint coordinates). However, other coordinates are possible and re