ترغب بنشر مسار تعليمي؟ اضغط هنا

A Suboptimality Approach to Distributed Linear Quadratic Optimal Control

113   0   0.0 ( 0 )
 نشر من قبل Junjie Jiao
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is concerned with the distributed linear quadratic optimal control problem. In particular, we consider a suboptimal version of the distributed optimal control problem for undirected multi-agent networks. Given a multi-agent system with identical agent dynamics and an associated global quadratic cost functional, our objective is to design suboptimal distributed control laws that guarantee the controlled network to reach consensus and the associated cost to be smaller than an a priori given upper bound. We first analyze the suboptimality for a given linear system and then apply the results to linear multiagent systems. Two design methods are then provided to compute such suboptimal distributed controllers, involving the solution of a single Riccati inequality of dimension equal to the dimension of the agent dynamics, and the smallest nonzero and the largest eigenvalue of the graph Laplacian. Furthermore, we relax the requirement of exact knowledge of the smallest nonzero and largest eigenvalue of the graph Laplacian by using only lower and upper bounds on these eigenvalues. Finally, a simulation example is provided to illustrate our design method.



قيم البحث

اقرأ أيضاً

This paper deals with the distributed $mathcal{H}_2$ optimal control problem for linear multi-agent systems. In particular, we consider a suboptimal version of the distributed $mathcal{H}_2$ optimal control problem. Given a linear multi-agent system with identical agent dynamics and an associated $mathcal{H}_2$ cost functional, our aim is to design a distributed diffusive static protocol such that the protocol achieves state synchronization for the controlled network and such that the associated cost is smaller than an a priori given upper bound. We first analyze the $mathcal{H}_2$ performance of linear systems and then apply the results to linear multi-agent systems. Two design methods are provided to compute such a suboptimal distributed protocol. For each method, the expression for the local control gain involves a solution of a single Riccati inequality of dimension equal to the dimension of the individual agent dynamics, and the smallest nonzero and the largest eigenvalue of the graph Laplacian.
In this paper, we extend the results from Jiao et al. (2019) on distributed linear quadratic control for leaderless multi-agent systems to the case of distributed linear quadratic tracking control for leader-follower multi-agent systems. Given one au tonomous leader and a number of homogeneous followers, we introduce an associated global quadratic cost functional. We assume that the leader shares its state information with at least one of the followers and the communication between the followers is represented by a connected simple undirected graph. Our objective is to design distributed control laws such that the controlled network reaches tracking consensus and, moreover, the associated cost is smaller than a given tolerance for all initial states bounded in norm by a given radius. We establish a centralized design method for computing such suboptimal control laws, involving the solution of a single Riccati inequality of dimension equal to the dimension of the local agent dynamics, and the smallest and the largest eigenvalue of a given positive definite matrix involving the underlying graph. The proposed design method is illustrated by a simulation example.
This paper deals with suboptimal distributed H2 control by dynamic output feedback for homogeneous linear multi-agent systems. Given a linear multi-agent system, together with an associated H2 cost functional, the objective is to design dynamic outpu t feedback protocols that guarantee the associated cost to be smaller than an a priori given upper bound while synchronizing the controlled network. A design method is provided to compute such protocols. The computation of the two local gains in these protocols involves two Riccati inequalities, each of dimension equal to the dimension of the state space of the agents. The largest and smallest nonzero eigenvalue of the Laplacian matrix of the network graph are also used in the computation of one of the two local gains.A simulation example is provided to illustrate the performance of the proposed protocols.
In this paper we consider the distributed linear quadratic control problem for networks of agents with single integrator dynamics. We first establish a general formulation of the distributed LQ problem and show that the optimal control gain depends o n global information on the network. Thus, the optimal protocol can only be computed in a centralized fashion. In order to overcome this drawback, we propose the design of protocols that are computed in a decentralized way. We will write the global cost functional as a sum of local cost functionals, each associated with one of the agents. In order to achieve good performance of the controlled network, each agent then computes its own local gain, using sampled information of its neighboring agents. This decentralized computation will only lead to suboptimal global network behavior. However, we will show that the resulting network will reach consensus. A simulation example is provided to illustrate the performance of the proposed protocol.
The linear-quadratic regulator (LQR) is an efficient control method for linear and linearized systems. Typically, LQR is implemented in minimal coordinates (also called generalized or joint coordinates). However, other coordinates are possible and re cent research suggests that there may be numerical and control-theoretic advantages when using higher-dimensional non-minimal state parameterizations for dynamical systems. One such parameterization is maximal coordinates, in which each link in a multi-body system is parameterized by its full six degrees of freedom and joints between links are modeled with algebraic constraints. Such constraints can also represent closed kinematic loops or contact with the environment. This paper investigates the difference between minimal- and maximal-coordinate LQR control laws. A case study of applying LQR to a simple pendulum and simulations comparing the basins of attraction and tracking performance of minimal- and maximal-coordinate LQR controllers suggest that maximal-coordinate LQR achieves greater robustness and improved tracking performance compared to minimal-coordinate LQR when applied to nonlinear systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا