ﻻ يوجد ملخص باللغة العربية
The defining characteristic of an exceptional point (EP) in the parameter space of a family of operators is that upon encircling the EP eigenstates are permuted. In case one encircles multiple EPs, the question arises how to properly compose the effects of the individual EPs. This was thought to be ambiguous. We show that one can solve this problem by considering based loops and their deformations. The theory of fundamental groups allows to generalize this technique to arbitrary degeneracy structures like exceptional lines in a three-dimensional parameter space. As permutations of three or more objects form a non-abelian group, the next question that arises is whether one can experimentally demonstrate this non-commutative behavior. This requires at least two EPs of a family of operators that have at least 3 eigenstates. A concrete implementation in a recently proposed $mathcal{PT}$ symmetric waveguide system is suggested as an example of how to experimentally check the composition law and show the non-abelian nature of non-hermitian systems with multiple EPs.
The usual concepts of topological physics, such as the Berry curvature, cannot be applied directly to non-Hermitian systems. We show that another object, the quantum metric, which often plays a secondary role in Hermitian systems, becomes a crucial q
It has recently been established that, in a non-demolition measurement of an observable $mathcal{N}$ with a finite point spectrum, the density matrix of the system approaches an eigenstate of $mathcal{N}$, i.e., it purifies over the spectrum of $math
A non-abelian phase space, or a phase space of a Lie algebra is a generalization of the usual (abelian) phase space of a vector space. It corresponds to a parakahler structure in geometry. Its structure can be interpreted in terms of left-symmetric a
Over the past two decades, open systems that are described by a non-Hermitian Hamiltonian have become a subject of intense research. These systems encompass classical wave systems with balanced gain and loss, semiclassical models with mode selective
We propose an optomechanical nano-gravimeter based on exceptional points. The system is a coupled cavity optomechanical system, in which the gain and loss are applied by driving the cavities with a blue detuned and red detuned electromagnetic field,