ﻻ يوجد ملخص باللغة العربية
We propose an optomechanical nano-gravimeter based on exceptional points. The system is a coupled cavity optomechanical system, in which the gain and loss are applied by driving the cavities with a blue detuned and red detuned electromagnetic field, respectively. When the gain and loss reach a balance, the system will show the degeneracy of exceptional points, and any perturbation will cause an eigenfrequencies split, which is proportional to the square root of the perturbation strength. Compared with the traditional optomechanical sensors, the sensitivity is greatly enhanced. This work paves the way for the design of optomechanical ultrasensitive force sensors that can be applied to detect non-Newtonian effects, high-order weak interactions, and so on.
The usual concepts of topological physics, such as the Berry curvature, cannot be applied directly to non-Hermitian systems. We show that another object, the quantum metric, which often plays a secondary role in Hermitian systems, becomes a crucial q
Engineered non-Hermitian systems featuring exceptional points can lead to a host of extraordinary phenomena in diverse fields ranging from photonics, acoustics, opto-mechanics, electronics, to atomic physics. Here we introduce and present non-Hermiti
We develop a quantum mechanical method of measuring the Newtonian constant of gravitation, G. In this method, an optomechanical system consisting of two cavities and two membrane resonators is used. The added source mass would induce the shifts of th
The defining characteristic of an exceptional point (EP) in the parameter space of a family of operators is that upon encircling the EP eigenstates are permuted. In case one encircles multiple EPs, the question arises how to properly compose the effe
Over the past two decades, open systems that are described by a non-Hermitian Hamiltonian have become a subject of intense research. These systems encompass classical wave systems with balanced gain and loss, semiclassical models with mode selective