ﻻ يوجد ملخص باللغة العربية
The usual concepts of topological physics, such as the Berry curvature, cannot be applied directly to non-Hermitian systems. We show that another object, the quantum metric, which often plays a secondary role in Hermitian systems, becomes a crucial quantity near exceptional points in non-Hermitian systems, where it diverges in a way that fully controls the description of wavepacket trajectories. The quantum metric behaviour is responsible for a constant acceleration with a fixed direction, and for a non-vanishing constant velocity with a controllable direction. Both contributions are independent of the wavepacket size.
The fermion doubling theorem plays a pivotal role in Hermitian topological materials. It states, for example, that Weyl points must come in pairs in three-dimensional semimetals. Here, we present an extension of the doubling theorem to non-Hermitian
We study the geometric response of three-dimensional non-Hermitian crystalline systems with nontrivial point-gap topology. For systems with fourfold rotation symmetry, we show that in the presence of disclination lines with a total Frank angle which
Based on a general transport theory for non-reciprocal non-Hermitian systems and a topological model that encompasses a wide range of previously studied models, we (i) provide conditions for effects such as reflectionless and transparent transport, l
Alternating current RLC electric circuits form an accessible and highly tunable platform simulating Hermitian as well as non-Hermitian (nH) quantum systems. We propose here a circuit realization of nH Dirac and Weyl Hamiltonians subject to time-rever
Engineered non-Hermitian systems featuring exceptional points can lead to a host of extraordinary phenomena in diverse fields ranging from photonics, acoustics, opto-mechanics, electronics, to atomic physics. Here we introduce and present non-Hermiti