ﻻ يوجد ملخص باللغة العربية
Nowadays, the application of fully autonomous system like rotary wing unmanned air vehicles (UAVs) is increasing sharply. Due to the complex nonlinear dynamics, a huge research interest is witnessed in developing learning machine based intelligent, self-organizing evolving controller for these vehicles notably to address the systems dynamic characteristics. In this work, such an evolving controller namely Generic-controller (G-controller) is proposed to control the altitude of a rotary wing UAV namely hexacopter. This controller can work with very minor expert domain knowledge. The evolving architecture of this controller is based on an advanced incremental learning algorithm namely Generic Evolving Neuro-Fuzzy Inference System (GENEFIS). The controller does not require any offline training, since it starts operating from scratch with an empty set of fuzzy rules, and then add or delete rules on demand. The adaptation laws for the consequent parameters are derived from the sliding mode control (SMC) theory. The Lyapunov theory is used to guarantee the stability of the proposed controller. In addition, an auxiliary robustifying control term is implemented to obtain a uniform asymptotic convergence of tracking error to zero. Finally, the G-controllers performance evaluation is observed through the altitude tracking of a UAV namely hexacopter for various trajectories.
There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Cont
Advanced and accurate modelling of a Flapping Wing Micro Air Vehicle (FW MAV) and its control is one of the recent research topics related to the field of autonomous Unmanned Aerial Vehicles (UAVs). In this work, a four wing Natureinspired (NI) FW MA
The joint design of control and communication scheduling in a Networked Control System (NCS) is known to be a hard problem. Several research works have successfully designed optimal sampling and/or control strategies under simplified communication mo
Controlling of a flapping flight is one of the recent research topics related to the field of Flapping Wing Micro Air Vehicle (FW MAV). In this work, an adaptive control system for a four-wing FW MAV is proposed, inspired by its advanced features lik
This paper investigates the visual servoing problem for robotic systems with uncertain kinematic, dynamic, and camera parameters. We first present the passivity properties associated with the overall kinematics of the system, and then propose two pas