ﻻ يوجد ملخص باللغة العربية
Controlling of a flapping flight is one of the recent research topics related to the field of Flapping Wing Micro Air Vehicle (FW MAV). In this work, an adaptive control system for a four-wing FW MAV is proposed, inspired by its advanced features like quick flight, vertical take-off and landing, hovering, and fast turn, and enhanced manoeuvrability. Sliding Mode Control (SMC) theory has been used to develop the adaptation laws for the proposed adaptive fuzzy controller. The SMC theory confirms the closed-loop stability of the controller. The controller is utilized to control the altitude of the FW MAV, that can adapt to environmental disturbances by tuning the antecedent and consequent parameters of the fuzzy system.
Advanced and accurate modelling of a Flapping Wing Micro Air Vehicle (FW MAV) and its control is one of the recent research topics related to the field of autonomous Unmanned Aerial Vehicles (UAVs). In this work, a four wing Natureinspired (NI) FW MA
There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Cont
In adaptive sliding mode control methods, an updating gain strategy associated with finite-time convergence to the sliding set is essential to deal with matched bounded perturbations with unknown upper-bound. However, the estimation of the finite tim
The flapping-wing aerial vehicle (FWAV) is a new type of flying robot that mimics the flight mode of birds and insects. However, FWAVs have their special characteristics of less load capacity and short endurance time, so that most existing systems of
We present a hierarchical framework that combines model-based control and reinforcement learning (RL) to synthesize robust controllers for a quadruped (the Unitree Laikago). The system consists of a high-level controller that learns to choose from a