ﻻ يوجد ملخص باللغة العربية
Advanced and accurate modelling of a Flapping Wing Micro Air Vehicle (FW MAV) and its control is one of the recent research topics related to the field of autonomous Unmanned Aerial Vehicles (UAVs). In this work, a four wing Natureinspired (NI) FW MAV is modeled and controlled inspiring by its advanced features like quick flight, vertical take-off and landing, hovering, and fast turn, and enhanced manoeuvrability when contrasted with comparable-sized fixed and rotary wing UAVs. The Fuzzy C-Means (FCM) clustering algorithm is utilized to demonstrate the NIFW MAV model, which has points of interest over first principle based modelling since it does not depend on the system dynamics, rather based on data and can incorporate various uncertainties like sensor error. The same clustering strategy is used to develop an adaptive fuzzy controller. The controller is then utilized to control the altitude of the NIFW MAV, that can adapt with environmental disturbances by tuning the antecedent and consequent parameters of the fuzzy system.
Controlling of a flapping flight is one of the recent research topics related to the field of Flapping Wing Micro Air Vehicle (FW MAV). In this work, an adaptive control system for a four-wing FW MAV is proposed, inspired by its advanced features lik
We investigate the effect of wing twist flexibility on lift and efficiency of a flapping-wing micro air vehicle capable of liftoff. Wings used previously were chosen to be fully rigid due to modeling and fabrication constraints. However, biological w
The flapping-wing aerial vehicle (FWAV) is a new type of flying robot that mimics the flight mode of birds and insects. However, FWAVs have their special characteristics of less load capacity and short endurance time, so that most existing systems of
There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Cont
Due to its inferior characteristics, an observed (noisy) images direct use gives rise to poor segmentation results. Intuitively, using its noise-free image can favorably impact image segmentation. Hence, the accurate estimation of the residual betwee