ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal chemotherapy and immunotherapy schedules for a cancer-obesity model with Caputo time fractional derivative

68   0   0.0 ( 0 )
 نشر من قبل Tu\\u{g}ba Akman Y{\\i}ld{\\i}z
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This work presents a new mathematical model to depict the effect of obesity on cancerous tumor growth when chemotherapy as well as immunotherapy have been administered. We consider an optimal control problem to destroy the tumor population and minimize the drug dose over a finite time interval. The constraint is a model including tumor cells, immune cells, fat cells, chemotherapeutic and immunotherapeutic drug concentrations with Caputo time fractional derivative. We investigate the existence and stability of the equilibrium points namely, tumor free equilibrium and coexisting equilibrium, analytically. We discretize the cancer-obesity model using L1-method. Simulation results of the proposed model are presented to compare three different treatment strategies: chemotherapy, immunotherapy and their combination. In addition, we investigate the effect of the differentiation order $alpha$ and the value of the decay rate of the amount of chemotherapeutic drug to the value of the cost functional. We find out the optimal treatment schedule in case of chemotherapy and immunotherapy applied.



قيم البحث

اقرأ أيضاً

We consider the problem of scheduling appointments for a finite customer population to a service facility with customer no-shows, to minimize the sum of customer waiting time and server overtime costs. Since appointments need to be scheduled ahead of time we refer to this problem as an optimization problem rather than a dynamic control one. We study this optimization problem in fluid and diffusion scales and identify asymptotically optimal schedules in both scales. In fluid scale, we show that it is optimal to schedule appointments so that the system is in critical load; thus heavy-traffic conditions are obtained as a result of optimization rather than as an assumption. In diffusion scale, we solve this optimization problem in the large horizon limit. Our explicit stationary solution of the corresponding Brownian Optimization Problem translates the customer-delay versus server-overtime tradeoff to a tradeoff between the state of a reflected Brownian motion in the half-line and its local time at zero. Motivated by work on competitive ratios, we also consider a reference model in which an oracle provides the decision maker with the complete randomness information. The difference between the values of the scheduling problem for the two models, to which we refer as the stochasticity gap (SG), quantifies the degree to which it is harder to design a schedule under uncertainty than when the stochastic primitives (i.e., the no-shows and service times) are known in advance. In the fluid scale, the SG converges to zero, but in the diffusion scale it converges to a positive constant that we compute.
Adoptive Cell Transfer therapy of cancer is currently in full development and mathematical modeling is playing a critical role in this area. We study a stochastic model developed by Baar et al. in 2015 for modeling immunotherapy against melanoma skin cancer. First, we estimate the parameters of the deterministic limit of the model based on biological data of tumor growth in mice. A Nonlinear Mixed Effects Model is estimated by the Stochastic Approximation Expectation Maximization algorithm. With the estimated parameters, we head back to the stochastic model and calculate the probability that the T cells all get exhausted during the treatment. We show that for some relevant parameter values, an early relapse is due to stochastic fluctuations (complete T cells exhaustion) with a non negligible probability. Then, focusing on the relapse related to the T cell exhaustion, we propose to optimize the treatment plan (treatment doses and restimulation times) by minimizing the T cell exhaustion probability in the parameter estimation ranges.
In this paper, we develop fast procedures for solving linear systems arising from discretization of ordinary and partial differential equations with Caputo fractional derivative w.r.t time variable. First, we consider a finite difference scheme to so lve a two-sided fractional ordinary equation. Furthermore, we present a fast solution technique to accelerate Toeplitz matrix-vector multiplications arising from finite difference discretization. This fast solution technique is based on a fast Fourier transform and depends on the special structure of coefficient matrices, and it helps to reduce the computational work from $O(N^{3})$ required by traditional methods to $O(Nlog^{2}N)$ and the memory requirement from $O(N^{2})$ to $O(N)$ without using any lossy compression, where $N$ is the number of unknowns. Two finite difference schemes to solve time fractional hyperbolic equations with different fractional order $gamma$ are considered. We present a fast solution technique depending on the special structure of coefficient matrices by rearranging the order of unknowns. It helps to reduce the computational work from $O(N^2M)$ required by traditional methods to $O(N$log$^{2}N)$ and the memory requirement from $O(NM)$ to $O(N)$ without using any lossy compression, where $N=tau^{-1}$ and $tau$ is the size of time step, $M=h^{-1}$ and $h$ is the size of space step. Importantly, a fast method is employed to solve the classical time fractional diffusion equation with a lower coast at $O(MN$log$^2N)$, where the direct method requires an overall computational complexity of $O(N^2M)$. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.
76 - Lei Li , Jian-Guo Liu 2019
We consider a discretization of Caputo derivatives resulted from deconvolving a scheme for the corresponding Volterra integral. Properties of this discretization, including signs of the coefficients, comparison principles, and stability of the corres ponding implicit schemes, are proved by its linkage to Volterra integrals with completely monotone kernels. We then apply the backward scheme corresponding to this discretization to two time fractional dissipative problems, and these implicit schemes are helpful for the analysis of the corresponding problems. In particular, we show that the overdamped generalized Langevin equation with fractional noise has a unique limiting measure for strongly convex potentials and establish the convergence of numerical solutions to the strong solutions of time fractional gradient flows. The proposed scheme and schemes derived using the same philosophy can be useful for many other applications as well.
91 - Fudong Ge , YangQuan Chen 2021
In this paper, we aim to explore optimal regional trajectory tracking control problems of the anomalous subdiffusion processes governed by time-fractional diffusion systems under the Neumann boundary conditions. Using eigenvalue theory of the system operator and the semigroup theory, we explore the existence and some estimates of the mild solution to the considered system. An approach on finding solution to the optimal problem that minimizes the regional trajectory tracking error and the corresponding control cost over a finite space and time domain is then explored via the Hilbert uniqueness method (HUM). The obtained results not only can be directly used to investigate the systems that are not controllable on the whole domain, but also yield an explicit expression of the control signal in terms of the desired trajectory. Most importantly, it is worth noting that our results in this paper are still novel even for the special case when the order of fractional derivative is equal to one. Finally, we provide a numerical example to illustrate our theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا