ﻻ يوجد ملخص باللغة العربية
In this paper, we develop fast procedures for solving linear systems arising from discretization of ordinary and partial differential equations with Caputo fractional derivative w.r.t time variable. First, we consider a finite difference scheme to solve a two-sided fractional ordinary equation. Furthermore, we present a fast solution technique to accelerate Toeplitz matrix-vector multiplications arising from finite difference discretization. This fast solution technique is based on a fast Fourier transform and depends on the special structure of coefficient matrices, and it helps to reduce the computational work from $O(N^{3})$ required by traditional methods to $O(Nlog^{2}N)$ and the memory requirement from $O(N^{2})$ to $O(N)$ without using any lossy compression, where $N$ is the number of unknowns. Two finite difference schemes to solve time fractional hyperbolic equations with different fractional order $gamma$ are considered. We present a fast solution technique depending on the special structure of coefficient matrices by rearranging the order of unknowns. It helps to reduce the computational work from $O(N^2M)$ required by traditional methods to $O(N$log$^{2}N)$ and the memory requirement from $O(NM)$ to $O(N)$ without using any lossy compression, where $N=tau^{-1}$ and $tau$ is the size of time step, $M=h^{-1}$ and $h$ is the size of space step. Importantly, a fast method is employed to solve the classical time fractional diffusion equation with a lower coast at $O(MN$log$^2N)$, where the direct method requires an overall computational complexity of $O(N^2M)$. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.
We identify the stochastic processes associated with one-sided fractional partial differential equations on a bounded domain with various boundary conditions. This is essential for modelling using spatial fractional derivatives. We show well-posednes
Averaging is an important method to extract effective macroscopic dynamics from complex systems with slow modes and fast modes. This article derives an averaged equation for a class of stochastic partial differential equations without any Lipschitz a
This manuscript investigates the existence and uniqueness of solutions to the first order fractional anti-periodic boundary value problem involving Caputo-Katugampola (CK) derivative. A variety of tools for analysis this paper through the integral eq
We study an algorithm which has been proposed by Chinesta et al. to solve high-dimensional partial differential equations. The idea is to represent the solution as a sum of tensor products and to compute iteratively the terms of this sum. This algori
We consider three problems for the Helmholtz equation in interior and exterior domains in R^d (d=2,3): the exterior Dirichlet-to-Neumann and Neumann-to-Dirichlet problems for outgoing solutions, and the interior impedance problem. We derive sharp est