ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameter estimation and treatment optimization in a stochastic model for immunotherapy of cancer

143   0   0.0 ( 0 )
 نشر من قبل Loren Coquille
 تاريخ النشر 2018
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Adoptive Cell Transfer therapy of cancer is currently in full development and mathematical modeling is playing a critical role in this area. We study a stochastic model developed by Baar et al. in 2015 for modeling immunotherapy against melanoma skin cancer. First, we estimate the parameters of the deterministic limit of the model based on biological data of tumor growth in mice. A Nonlinear Mixed Effects Model is estimated by the Stochastic Approximation Expectation Maximization algorithm. With the estimated parameters, we head back to the stochastic model and calculate the probability that the T cells all get exhausted during the treatment. We show that for some relevant parameter values, an early relapse is due to stochastic fluctuations (complete T cells exhaustion) with a non negligible probability. Then, focusing on the relapse related to the T cell exhaustion, we propose to optimize the treatment plan (treatment doses and restimulation times) by minimizing the T cell exhaustion probability in the parameter estimation ranges.



قيم البحث

اقرأ أيضاً

Background: Tumours are diverse ecosystems with persistent heterogeneity in various cancer hallmarks like self-sufficiency of growth factor production for angiogenesis and reprogramming of energy-metabolism for aerobic glycolysis. This heterogeneity has consequences for diagnosis, treatment, and disease progression. Methods: We introduce the double goods game to study the dynamics of these traits using evolutionary game theory. We model glycolytic acid production as a public good for all tumour cells and oxygen from vascularization via VEGF production as a club good benefiting non-glycolytic tumour cells. This results in three viable phenotypic strategies: glycolytic, angiogenic, and aerobic non-angiogenic. Results: We classify the dynamics into three qualitatively distinct regimes: (1) fully glycolytic, (2) fully angiogenic, or (3) polyclonal in all three cell types. The third regime allows for dynamic heterogeneity even with linear goods, something that was not possible in prior public good models that considered glycolysis or growth-factor production in isolation. Conclusion: The cyclic dynamics of the polyclonal regime stress the importance of timing for anti-glycolysis treatments like lonidamine. The existence of qualitatively different dynamic regimes highlights the order effects of treatments. In particular, we consider the potential of vascular renormalization as a neoadjuvant therapy before follow up with interventions like buffer therapy.
A small portion of a tissue defines a microstate in gene expression space. Mutations, epigenetic events or external factors cause microstate displacements which are modeled by combining small independent gene expression variations and large Levy jump s, resulting from the collective variations of a set of genes. The risk of cancer in a tissue is estimated as the microstate probability to transit from the normal to the tumor region in gene expression space. The formula coming from the contribution of large Levy jumps seems to provide a qualitatively correct description of the lifetime risk of cancer, and reveals an interesting connection between the risk and the way the tissue is protected against infections.
353 - Suvra Pal , Zui Pan , Souvik Roy 2021
In this paper, a new stochastic framework for parameter estimation and uncertainty quantification in colon cancer-induced angiogenesis, using patient data, is presented. The dynamics of colon cancer is given by a stochastic process that captures the inherent randomness in the system. The stochastic framework is based on the Fokker-Planck equation that represents the evolution of the probability density function corresponding to the stochastic process. An optimization problem is formulated that takes input individual patient data with randomness present, and is solved to obtain the unknown parameters corresponding to the individual tumor characteristics. Furthermore, sensitivity analysis of the optimal parameter set is performed to determine the parameters that need to be controlled, thus, providing information of the type of drugs that can be used for treatment.
The human adaptive immune response is known to weaken in advanced age, resulting in increased severity of pathogen-born illness, poor vaccine efficacy, and a higher prevalence of cancer in the elderly. Age-related erosion of the T-cell compartment ha s been implicated as a likely cause, but the underlying mechanisms driving this immunosenescence have not been quantitatively modeled and systematically analyzed. T-cell receptor diversity, or the extent of pathogen-derived antigen responsiveness of the T-cell pool, is known to diminish with age, but inherent experimental difficulties preclude accurate analysis on the full organismal level. In this paper, we formulate a mechanistic mathematical model of T-cell population dynamics on the immunoclonal subpopulation level, which provides quantitative estimates of diversity. We define different estimates for diversity that depend on the individual number of cells in a specific immunoclone. We show that diversity decreases with age primarily due to diminished thymic output of new T-cells and the resulting overall loss of small immunoclones.
Following antigen stimulation, the net outcomes of a T cell response are shaped by integrated signals from both positive co-stimulatory and negative regulatory molecules. Recently, the blockade of negative regulatory molecules (i.e. immune checkpoint signals) demonstrates therapeutic effects in treatment of human cancer, but only in a fraction of cancer patients. Since this therapy is aimed to enhance T cell responses to cancers, here we devised a conceptual model by integrating both positive and negative signals in addition to antigen stimulation. A digital range of adjustment of each signal is formulated in our model for prediction of a final T cell response. This model allows us to evaluate strategies in order to enhance antitumor T cell responses. Our model provides a rational combination strategy for maximizing the therapeutic effects of cancer immunotherapy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا