ﻻ يوجد ملخص باللغة العربية
UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally-bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, $Sigma_0$, such that the SFE increases from 4% to 51% as $Sigma_0$ increases from $13,M_{odot},{rm pc}^{-2}$ to $1300,M_{odot},{rm pc}^{-2}$. Cloud destruction occurs within $2$-$10,{rm Myr}$ after the onset of radiation feedback, or within $0.6$-$4.1$ freefall times (increasing with $Sigma_0$). Photoevaporation dominates the mass loss in massive, low surface-density clouds, but because most photons are absorbed in an ionization-bounded Str{o}mgren volume the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to $Sigma_0^{-0.74}$, and the ejection of neutrals substantially contributes to the disruption of low-mass and/or high-surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.
Using a suite of radiation hydrodynamic simulations of star cluster formation in turbulent clouds, we study the escape fraction of ionizing (Lyman continuum) and non-ionizing (FUV) radiation for a wide range of cloud masses and sizes. The escape frac
Molecular clouds are supported by turbulence and magnetic fields, but quantifying their influence on cloud lifecycle and star formation efficiency (SFE) remains an open question. We perform radiation MHD simulations of star-forming giant molecular cl
We present an implementation of an adaptive ray tracing (ART) module in the Athena hydrodynamics code that accurately and efficiently handles the radiative transfer involving multiple point sources on a three-dimensional Cartesian grid. We adopt a re
It is typically assumed that radiation pressure driven winds are accelerated to an asymptotic velocity of V ~ v_esc, where v_esc is the escape velocity from the central source. We note that this is not the case for dusty shells and clouds. Instead, i
Radiation pressure on dust is thought to play a crucial role in the formation process of massive stars by acting against gravitational collapse onto the central protostar. However, dust properties in dense regions irradiated by the intense radiation