ﻻ يوجد ملخص باللغة العربية
Molecular clouds are supported by turbulence and magnetic fields, but quantifying their influence on cloud lifecycle and star formation efficiency (SFE) remains an open question. We perform radiation MHD simulations of star-forming giant molecular clouds (GMCs) with UV radiation feedback, in which the propagation of UV radiation via ray-tracing is coupled to hydrogen photochemistry. We consider 10 GMC models that vary in either initial virial parameter ($1lealpha_{v,0}le 5$) or dimensionless mass-to-magnetic flux ratio (0.5-8 and $infty$); the initial mass $10^5M_{odot}$ and radius 20pc are fixed. Each model is run with five different initial turbulence realizations. In most models, the duration of star formation and the timescale for molecular gas removal (primarily by photoevaporation) are 4-8Myr. Both the final SFE ($epsilon_*$) and time-averaged SFE per freefall time ($epsilon_{ff}$) are reduced by strong turbulence and magnetic fields. The median $epsilon_*$ ranges between 2.1% and 9.5%. The median $epsilon_{ff}$ ranges between 1.0% and 8.0% and anticorrelates with $alpha_{v,0}$, in qualitative agreement with previous analytic theory and simulations. However, the time-dependent $alpha_{v}(t)$ and $epsilon_{ff,obs}(t)$ based on instantaneous gas properties and cluster luminosity are positively correlated due to rapid evolution, making observational validation of star formation theory difficult. Our median $epsilon_{ff,obs}(t)approx$ 2% is similar to observed values. We show that the traditional virial parameter estimates the true gravitational boundedness within a factor of 2 on average, but neglect of magnetic support and velocity anisotropy can sometimes produce large departures. Magnetically subcritical GMCs are unlikely to represent sites of massive star formation given their unrealistic columnar outflows, prolonged lifetime, and low escape fraction of radiation.
UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation
Radiative feedback is an important consequence of cluster formation in Giant Molecular Clouds (GMCs) in which newly formed clusters heat and ionize their surrounding gas. The process of cluster formation, and the role of radiative feedback, has not b
We investigate the origin of observed local star formation relations using radiative magnetohydrodynamic simulations with self-consistent star formation and ionising radiation. We compare these clouds to the density distributions of local star-formin
Using a suite of radiation hydrodynamic simulations of star cluster formation in turbulent clouds, we study the escape fraction of ionizing (Lyman continuum) and non-ionizing (FUV) radiation for a wide range of cloud masses and sizes. The escape frac
We study star cluster formation in various environments with different metallicities and column densities by performing a suite of three-dimensional radiation hydrodynamics simulations. We find that the photoionization feedback from massive stars con