ﻻ يوجد ملخص باللغة العربية
It is typically assumed that radiation pressure driven winds are accelerated to an asymptotic velocity of V ~ v_esc, where v_esc is the escape velocity from the central source. We note that this is not the case for dusty shells and clouds. Instead, if the shell or cloud is initially optically-thick to the UV emission from the source of luminosity L, then there is a significant boost in V that reflects the integral of the momentum absorbed as it is accelerated. For shells reaching a generalized Eddington limit, we show that V ~ (4R_UV L/M_sh c)^1/2, in both point-mass and isothermal-sphere potentials, where R_UV is the radius where the shell becomes optically-thin to UV photons, and M_sh is the mass of the shell. The asymptotic velocity significantly exceeds v_esc for typical parameters, and can explain the ~1000-2000km/s outflows observed from rapidly star-forming galaxies and active galactic nuclei if the surrounding halo has low gas density. Similarly fast outflows from massive stars can be accelerated on few - 10^3 yr timescales. These results carry over to clouds that subtend only a small fraction of the solid angle from the source of radiation and that expand as a consequence of their internal sound speed. We further consider the dynamics of shells that sweep up a dense circumstellar or circumgalactic medium. We calculate the momentum ratio Mdot v/(L/c) in the shell limit and show that it can only significantly exceed ~2 if the effective optical depth of the shell to re-radiated FIR photons is much larger than unity. We discuss simple prescriptions for the properties of galactic outflows for use in large-scale cosmological simulations. We also briefly discuss applications to the dusty ejection episodes of massive stars, the disruption of giant molecular clouds, and AGN.
UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation
Outflows driven by active galactic nuclei (AGN) are an important channel for accreting supermassive black holes (SMBHs) to interact with their host galaxies and clusters. Properties of the outflows are however poorly constrained due to the lack of ki
Using a suite of radiation hydrodynamic simulations of star cluster formation in turbulent clouds, we study the escape fraction of ionizing (Lyman continuum) and non-ionizing (FUV) radiation for a wide range of cloud masses and sizes. The escape frac
The young star clusters we observe today are the building blocks of a new generation of stars and planets in our Galaxy and beyond. Despite their fundamental role we still lack knowledge about the conditions under which star clusters form and the imp
Stellar feedback in the form of radiation pressure and magnetically-driven collimated outflows may limit the maximum mass that a star can achieve and affect the star-formation efficiency of massive pre-stellar cores. Here we present a series of 3D ad