ﻻ يوجد ملخص باللغة العربية
This paper studies the object transfiguration problem in wild images. The generative network in classical GANs for object transfiguration often undertakes a dual responsibility: to detect the objects of interests and to convert the object from source domain to target domain. In contrast, we decompose the generative network into two separat networks, each of which is only dedicated to one particular sub-task. The attention network predicts spatial attention maps of images, and the transformation network focuses on translating objects. Attention maps produced by attention network are encouraged to be sparse, so that major attention can be paid to objects of interests. No matter before or after object transfiguration, attention maps should remain constant. In addition, learning attention network can receive more instructions, given the available segmentation annotations of images. Experimental results demonstrate the necessity of investigating attention in object transfiguration, and that the proposed algorithm can learn accurate attention to improve quality of generated images.
Despite the remarkable advances in visual saliency analysis for natural scene images (NSIs), salient object detection (SOD) for optical remote sensing images (RSIs) still remains an open and challenging problem. In this paper, we propose an end-to-en
Object Transfiguration replaces an object in an image with another object from a second image. For example it can perform tasks like putting exactly those eyeglasses from image A on the nose of the person in image B. Usage of exemplar images allows m
Blind face restoration (BFR) from severely degraded face images in the wild is a very challenging problem. Due to the high illness of the problem and the complex unknown degradation, directly training a deep neural network (DNN) usually cannot lead t
In this work we explore reconstructing hand-object interactions in the wild. The core challenge of this problem is the lack of appropriate 3D labeled data. To overcome this issue, we propose an optimization-based procedure which does not require dire
Digital images nowadays have various styles of appearance, in the aspects of color tones, contrast, vignetting, and etc. These picture styles are directly related to the scene radiance, image pipeline of the camera, and post processing functions. Due