ﻻ يوجد ملخص باللغة العربية
Digital images nowadays have various styles of appearance, in the aspects of color tones, contrast, vignetting, and etc. These picture styles are directly related to the scene radiance, image pipeline of the camera, and post processing functions. Due to the complexity and nonlinearity of these causes, popular gradient-based image descriptors wont be invariant to different picture styles, which will decline the performance of object recognition. Given that images shared online or created by individual users are taken with a wide range of devices and may be processed by various post processing functions, to find a robust object recognition system is useful and challenging. In this paper, we present the first study on the influence of picture styles for object recognition, and propose an adaptive approach based on the kernel view of gradient descriptors and multiple kernel learning, without estimating or specifying the styles of images used in training and testing. We conduct experiments on Domain Adaptation data set and Oxford Flower data set. The experiments also include several variants of the flower data set by processing the images with popular photo effects. The results demonstrate that our proposed method improve from standard descriptors in all cases.
This paper is a brief introduction to our submission to the seven basic expression classification track of Affective Behavior Analysis in-the-wild Competition held in conjunction with the IEEE International Conference on Automatic Face and Gesture Re
We propose a method to learn image representations from uncurated videos. We combine a supervised loss from off-the-shelf object detectors and self-supervised losses which naturally arise from the video-shot-frame-object hierarchy present in each vid
Since the renaissance of deep learning (DL), facial expression recognition (FER) has received a lot of interest, with continual improvement in the performance. Hand-in-hand with performance, new challenges have come up. Modern FER systems deal with f
In this work we explore reconstructing hand-object interactions in the wild. The core challenge of this problem is the lack of appropriate 3D labeled data. To overcome this issue, we propose an optimization-based procedure which does not require dire
This paper studies the object transfiguration problem in wild images. The generative network in classical GANs for object transfiguration often undertakes a dual responsibility: to detect the objects of interests and to convert the object from source