ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstructing Hand-Object Interactions in the Wild

114   0   0.0 ( 0 )
 نشر من قبل Zhe Cao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we explore reconstructing hand-object interactions in the wild. The core challenge of this problem is the lack of appropriate 3D labeled data. To overcome this issue, we propose an optimization-based procedure which does not require direct 3D supervision. The general strategy we adopt is to exploit all available related data (2D bounding boxes, 2D hand keypoints, 2D instance masks, 3D object models, 3D in-the-lab MoCap) to provide constraints for the 3D reconstruction. Rather than optimizing the hand and object individually, we optimize them jointly which allows us to impose additional constraints based on hand-object contact, collision, and occlusion. Our method produces compelling reconstructions on the challenging in-the-wild data from the EPIC Kitchens and the 100 Days of Hands datasets, across a range of object categories. Quantitatively, we demonstrate that our approach compares favorably to existing approaches in the lab settings where ground truth 3D annotations are available.



قيم البحث

اقرأ أيضاً

Estimating 3D hand and object pose from a single image is an extremely challenging problem: hands and objects are often self-occluded during interactions, and the 3D annotations are scarce as even humans cannot directly label the ground-truths from a single image perfectly. To tackle these challenges, we propose a unified framework for estimating the 3D hand and object poses with semi-supervised learning. We build a joint learning framework where we perform explicit contextual reasoning between hand and object representations by a Transformer. Going beyond limited 3D annotations in a single image, we leverage the spatial-temporal consistency in large-scale hand-object videos as a constraint for generating pseudo labels in semi-supervised learning. Our method not only improves hand pose estimation in challenging real-world dataset, but also substantially improve the object pose which has fewer ground-truths per instance. By training with large-scale diverse videos, our model also generalizes better across multiple out-of-domain datasets. Project page and code: https://stevenlsw.github.io/Semi-Hand-Object
Affordance detection refers to identifying the potential action possibilities of objects in an image, which is a crucial ability for robot perception and manipulation. To empower robots with this ability in unseen scenarios, we first study the challe nging one-shot affordance detection problem in this paper, i.e., given a support image that depicts the action purpose, all objects in a scene with the common affordance should be detected. To this end, we devise a One-Shot Affordance Detection Network (OSAD-Net) that firstly estimates the human action purpose and then transfers it to help detect the common affordance from all candidate images. Through collaboration learning, OSAD-Net can capture the common characteristics between objects having the same underlying affordance and learn a good adaptation capability for perceiving unseen affordances. Besides, we build a large-scale Purpose-driven Affordance Dataset v2 (PADv2) by collecting and labeling 30k images from 39 affordance and 103 object categories. With complex scenes and rich annotations, our PADv2 dataset can be used as a test bed to benchmark affordance detection methods and may also facilitate downstream vision tasks, such as scene understanding, action recognition, and robot manipulation. Specifically, we conducted comprehensive experiments on PADv2 dataset by including 11 advanced models from several related research fields. Experimental results demonstrate the superiority of our model over previous representative ones in terms of both objective metrics and visual quality. The benchmark suite is available at https://github.com/lhc1224/OSAD Net.
Gesture recognition is a fundamental tool to enable novel interaction paradigms in a variety of application scenarios like Mixed Reality environments, touchless public kiosks, entertainment systems, and more. Recognition of hand gestures can be nowad ays performed directly from the stream of hand skeletons estimated by software provided by low-cost trackers (Ultraleap) and MR headsets (Hololens, Oculus Quest) or by video processing software modules (e.g. Google Mediapipe). Despite the recent advancements in gesture and action recognition from skeletons, it is unclear how well the current state-of-the-art techniques can perform in a real-world scenario for the recognition of a wide set of heterogeneous gestures, as many benchmarks do not test online recognition and use limited dictionaries. This motivated the proposal of the SHREC 2021: Track on Skeleton-based Hand Gesture Recognition in the Wild. For this contest, we created a novel dataset with heterogeneous gestures featuring different types and duration. These gestures have to be found inside sequences in an online recognition scenario. This paper presents the result of the contest, showing the performances of the techniques proposed by four research groups on the challenging task compared with a simple baseline method.
This paper studies the object transfiguration problem in wild images. The generative network in classical GANs for object transfiguration often undertakes a dual responsibility: to detect the objects of interests and to convert the object from source domain to target domain. In contrast, we decompose the generative network into two separat networks, each of which is only dedicated to one particular sub-task. The attention network predicts spatial attention maps of images, and the transformation network focuses on translating objects. Attention maps produced by attention network are encouraged to be sparse, so that major attention can be paid to objects of interests. No matter before or after object transfiguration, attention maps should remain constant. In addition, learning attention network can receive more instructions, given the available segmentation annotations of images. Experimental results demonstrate the necessity of investigating attention in object transfiguration, and that the proposed algorithm can learn accurate attention to improve quality of generated images.
181 - Zhenyu Guo , Z.Jane Wang 2013
Digital images nowadays have various styles of appearance, in the aspects of color tones, contrast, vignetting, and etc. These picture styles are directly related to the scene radiance, image pipeline of the camera, and post processing functions. Due to the complexity and nonlinearity of these causes, popular gradient-based image descriptors wont be invariant to different picture styles, which will decline the performance of object recognition. Given that images shared online or created by individual users are taken with a wide range of devices and may be processed by various post processing functions, to find a robust object recognition system is useful and challenging. In this paper, we present the first study on the influence of picture styles for object recognition, and propose an adaptive approach based on the kernel view of gradient descriptors and multiple kernel learning, without estimating or specifying the styles of images used in training and testing. We conduct experiments on Domain Adaptation data set and Oxford Flower data set. The experiments also include several variants of the flower data set by processing the images with popular photo effects. The results demonstrate that our proposed method improve from standard descriptors in all cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا