ﻻ يوجد ملخص باللغة العربية
We present the first ALMA dust polarization observations towards the high-mass star-forming regions W51 e2, e8, and W51 North in Band 6 (230 GHz) with a resolution around 0.26 ($sim5$mpc). Polarized emission in all three sources is clearly detected and resolved. Measured relative polarization levels are between 0.1% and 10%. While the absolute polarization shows complicated structures, the relative polarization displays the typical anti-correlation with Stokes $I$, though with a large scatter. Inferred magnetic (B) field morphologies are organized and connected. Detailed substructures are resolved, revealing new features such as cometary-shaped B-field morphologies in satellite cores, symmetrically converging B-field zones, and possibly streamlined morphologies. The local B-field dispersion shows some anti-correlation with the relative polarization. Moreover, lowest polarization percentages together with largest dispersions coincide with B-field convergence zones. We put forward $sinomega$, where $omega$ is the measurable angle between a local B-field orientation and local gravity, as a measure of how effectively the B-field can oppose gravity. Maps of $sinomega$ for all three sources show organized structures that suggest a locally varying role of the B-field, with some regions where gravity can largely act unaffectedly, possibly in a network of narrow magnetic channels, and other regions where the B-field can work maximally against gravity.
Context. The role of magnetic fields during the formation of high-mass stars is not yet fully understood, and the processes related to the early fragmentation and collapse are largely unexplored today. The high-mass star forming region G9.62+0.19 is
The present study aims at characterizing the massive star forming region G35.20N, which is found associated with at least one massive outflow and contains multiple dense cores, one of them recently found associated with a Keplerian rotating disk. We
H2D+ is a primary ion which dominates the gas-phase chemistry of cold dense gas. Therefore it is hailed as a unique tool in probing the earliest, prestellar phase of star formation. Observationally, its abundance and distribution is however just begi
We observed radio recombination lines (RRLs) toward the W51 molecular cloud complex, one of the most active star forming regions in our Galaxy. The UV radiation from young massive stars ionizes gas surrounding them to produce HII regions. Observation
We present observations of twelve rotational transitions of H2O-16, H2O-18, and H2O-17 toward the massive star-forming region NGC 6334 I, carried out with Herschel/HIFI as part of the guaranteed time key program Chemical HErschel Surveys of Star form