ترغب بنشر مسار تعليمي؟ اضغط هنا

H2D+ in the high mass star-forming Region Cygnus-X

134   0   0.0 ( 0 )
 نشر من قبل Thushara Pillai
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Thushara Pillai




اسأل ChatGPT حول البحث

H2D+ is a primary ion which dominates the gas-phase chemistry of cold dense gas. Therefore it is hailed as a unique tool in probing the earliest, prestellar phase of star formation. Observationally, its abundance and distribution is however just beginning to be understood in low-mass prestellar and cluster-forming cores. In high mass star forming regions, H2D+ has been detected only in two cores, and its spatial distribution remains unknown. Here we present the first map of the 372 GHz ortho-H2D+ and N2H+ 4-3 transition in the DR21 filament of Cygnus-X with the JCMT, and N2D+ 3--2 and dust continuum with the SMA. We have discovered five very extended (<= 34000 AU diameter) weak structures in H2D+ in the vicinity of, but distinctly offset from embedded protostars. More surprisingly, the H2D+ peak is not associated with either a dust continuum or N2D+ peak. We have therefore uncovered extended massive cold dense gas that was undetected with previous molecular line and dust continuum surveys of the region. This work also shows that our picture of the structure of cores is too simplistic for cluster forming cores and needs to be refined: neither dust continuum with existing capabilities, nor emission in tracers like N2D+ can provide a complete census of the total prestellar gas in such regions. Sensitive H2D+ mapping of the entire DR21 filament is likely to discover more of such cold quiescent gas reservoirs in an otherwise active high mass star-forming region.



قيم البحث

اقرأ أيضاً

Whether the Cygnus X complex consists of one physically connected region of star formation or of multiple independent regions projected close together on the sky has been debated for decades. The main reason for this puzzling scenario is the lack of trustworthy distance measurements. We aim to understand the structure and dynamics of the star-forming regions toward Cygnus X by accurate distance and proper motion measurements. To measure trigonometric parallaxes, we observed 6.7 GHz methanol and 22 GHz water masers with the European VLBI Network and the Very Long Baseline Array. We measured the trigonometric parallaxes and proper motions of five massive star-forming regions toward the Cygnus X complex and report the following distances within a 10% accuracy: 1.30+-0.07 kpc for W 75N, 1.46^{+0.09}_{-0.08} kpc for DR 20, 1.50^{+0.08}_{-0.07} kpc for DR 21, 1.36^{+0.12}_{-0.11} kpc for IRAS20290+4052, and 3.33+-0.11kpc for AFGL 2591. While the distances of W 75N, DR 20, DR 21, and IRAS 20290+4052 are consistent with a single distance of 1.40+-0.08 kpc for the Cygnus X complex, AFGL 2591 is located at a much greater distance than previously assumed. The space velocities of the four star-forming regions in the Cygnus X complex do not suggest an expanding Stroemgren sphere.
We present observations of twelve rotational transitions of H2O-16, H2O-18, and H2O-17 toward the massive star-forming region NGC 6334 I, carried out with Herschel/HIFI as part of the guaranteed time key program Chemical HErschel Surveys of Star form ing regions (CHESS). We analyze these observations to obtain insights into physical processes in this region. We identify three main gas components (hot core, cold foreground, and outflow) in NGC 6334 I and derive the physical conditions in these components. The hot core, identified by the emission in highly excited lines, shows a high excitation temperature of 200 K, whereas water in the foreground component is predominantly in the ortho- and para- ground states. The abundance of water varies between 4 10^-5 (outflow) and 10^-8 (cold foreground gas). This variation is most likely due to the freeze-out of water molecules onto dust grains. The H2O-18/H2O-17 abundance ratio is 3.2, which is consistent with the O-18/O-17 ratio determined from CO isotopologues. The ortho/para ratio in water appears to be relatively low 1.6(1) in the cold, quiescent gas, but close to the equilibrium value of three in the warmer outflow material (2.5(0.8)).
The abundance of deuterated molecules in a star-forming region is sensitive to the environment in which they are formed. Deuteration fractions therefore provide a powerful tool for studying the physical and chemical evolution of a star-forming system . While local low-mass star-forming regions show very high deuteration ratios, much lower fractions are observed towards Orion and the Galactic Centre. We derive methanol deuteration fractions at a number of locations towards the high-mass star-forming region NGC 6334I, located at a mean distance of 1.3 kpc, and discuss how these can shed light on the conditions prevailing during its formation. We use high sensitivity, high spatial and spectral resolution observations obtained with ALMA to study transitions of the less abundant, optically thin, methanol-isotopologues: (13)CH3OH, CH3(18)OH, CH2DOH and CH3OD, detected towards NGC 6334I. Assuming LTE and excitation temperatures of 120-330 K, we derive column densities for each of the species and use these to infer CH2DOH/CH3OH and CH3OD/CH3OH fractions. Interestingly, the column densities of CH3OD are consistently higher than those of CH2DOH throughout the region. All regions studied in this work show CH2DOH/CH3OH as well as CH2DOH/CH3OD ratios that are considerably lower than those derived towards low-mass star-forming regions and slightly lower than those derived for the high-mass star-forming regions in Orion and the Galactic Centre. The low ratios indicate a grain surface temperature during formation ~30 K, for which the efficiency of the formation of deuterated species is significantly reduced.
178 - M.T. Beltran 2013
Context. G29.96-0.02 is a high-mass star-forming cloud observed at 70, 160, 250, 350, and 500 microns as part of the Herschel survey of the Galactic Plane during the Science Demonstration Phase. Aims. We wish to conduct a far-infrared study of the so urces associated with this star-forming region by estimating their physical properties and evolutionary stage, and investigating the clump mass function, the star formation efficiency and rate in the cloud. Methods. We have identified the Hi-GAL sources associated with the cloud, searched for possible counterparts at centimeter and infrared wavelengths, fitted their spectral energy distribution and estimated their physical parameters. Results. A total of 198 sources have been detected in all 5 Hi-GAL bands, 117 of which are associated with 24 microns emission and 87 of which are not associated with 24 microns emission. We called the former sources 24 microns-bright and the latter ones 24 microns-dark. The [70-160] color of the 24 microns-dark sources is smaller than that of the 24 microns-bright ones. The 24 microns-dark sources have lower L_bol and L_bol/M_env than the 24 microns-bright ones for similar M_env, which suggests that they are in an earlier evolutionary phase. The G29-SFR cloud is associated with 10 NVSS sources and with extended centimeter continuum emission well correlated with the 70 microns emission. Most of the NVSS sources appear to be early B or late O-type stars. The most massive and luminous Hi-GAL sources in the cloud are located close to the G29-UC region, which suggests that there is a privileged area for massive star formation towards the center of the G29-SFR cloud. Almost all the Hi-GAL sources have masses well above the Jeans mass but only 5% have masses above the virial mass, which indicates that most of the sources are stable against gravitational collapse. The sources with M_env > M_virial and that ...
Aims: We study the fragmentation and dynamical properties of a massive starless gas clump at the onset of high-mass star formation. Methods: Based on Herschel continuum data we identify a massive gas clump that remains far-infrared dark up to 100mum wavelengths. The fragmentation and dynamical properties are investigated by means of Plateau de Bure Interferometer and Nobeyama 45m single-dish spectral line and continuum observations. Results: The massive gas reservoir fragments at spatial scales of ~18000AU in four cores. Comparing the spatial extent of this high-mass region with intermediate- to low-mass starless cores from the literature, we find that linear sizes do not vary significantly over the whole mass regime. However, the high-mass regions squeeze much more gas into these similar volumes and hence have orders of magnitude larger densities. The fragmentation properties of the presented low-to high-mass regions are consistent with gravitational instable Jeans fragmentation. Furthermore, we find multiple velocity components associated with the resolved cores. Recent radiative transfer hydrodynamic simulations of the dynamic collapse of massive gas clumps also result in multiple velocity components along the line of sight because of the clumpy structure of the regions. This result is supported by a ratio between viral and total gas mass for the whole region <1. Conclusions: This apparently still starless high-mass gas clump exhibits clear signatures of early fragmentation and dynamic collapse prior to the formation of an embedded heating source. A comparison with regions of lower mass reveals that the linear size of star-forming regions does not necessarily have to vary much for different masses, however, the mass reservoirs and gas densities are orders of magnitude enhanced for high-mass regions compared to their lower-mass siblings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا