ﻻ يوجد ملخص باللغة العربية
Given a piecewise $C^{1+beta}$ map of the interval, possibly with critical points and discontinuities, we construct a symbolic model for invariant probability measures with nonuniform expansion that do not approach the critical points and discontinuities exponentially fast almost surely. More specifically, we code the lift of these measures in the natural extension of the map.
This work constructs symbolic dynamics for non-uniformly hyperbolic surface maps with a set of discontinuities $D$. We allow the derivative of points nearby $D$ to be unbounded, of the order of a negative power of the distance to $D$. Under natural g
We construct Markov partitions for non-invertible and/or singular nonuniformly hyperbolic systems defined on higher dimensional Riemannian manifolds. The generality of the setup covers classical examples not treated so far, such as geodesic flows in
We construct symbolic dynamics on sets of full measure (w.r.t. an ergodic measure of positive entropy) for $C^{1+epsilon}$ flows on compact smooth three-dimensional manifolds. One consequence is that the geodesic flow on the unit tangent bundle of a
In this paper we investigate how many periodic attractors maps in a small neighbourhood of a given map can have. For this purpose we develop new tools which help to make uniform cross-ratio distortion estimates in a neighbourhood of a map with degenerate critical points.
We prove that a class of one-dimensional maps with an arbitrary number of non-degenerate critical and singular points admits an induced Markov tower with exponential return time asymptotics. In particular the map has an absolutely continuous invarian