ﻻ يوجد ملخص باللغة العربية
We construct Markov partitions for non-invertible and/or singular nonuniformly hyperbolic systems defined on higher dimensional Riemannian manifolds. The generality of the setup covers classical examples not treated so far, such as geodesic flows in closed manifolds, multidimensional billiard maps, and Viana maps, and includes all the recent results of the literature. We also provide a wealth of applications.
This survey describes the recent advances in the construction of Markov partitions for nonuniformly hyperbolic systems. One important feature of this development comes from a finer theory of nonuniformly hyperbolic systems, which we also describe. Th
This work constructs symbolic dynamics for non-uniformly hyperbolic surface maps with a set of discontinuities $D$. We allow the derivative of points nearby $D$ to be unbounded, of the order of a negative power of the distance to $D$. Under natural g
Given a piecewise $C^{1+beta}$ map of the interval, possibly with critical points and discontinuities, we construct a symbolic model for invariant probability measures with nonuniform expansion that do not approach the critical points and discontinui
We study the problem of finding algebraically stable models for non-invertible holomorphic fixed point germs $fcolon (X,x_0)to (X,x_0)$, where $X$ is a complex surface having $x_0$ as a normal singularity. We prove that as long as $x_0$ is not a cusp
We define higher pentagram maps on polygons in $P^d$ for any dimension $d$, which extend R.Schwartzs definition of the 2D pentagram map. We prove their integrability by presenting Lax representations with a spectral parameter for scale invariant maps