ﻻ يوجد ملخص باللغة العربية
We present experiments and numerical simulations which demonstrate that fully-ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization (OFI). Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of unit[200]{mm} long plasma channels with axial densities of order $n_e(0) = 1 times 10^{17} cm^{-3}$ and lowest-order modes of spot size $W_M approx 40 mu m$. These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimetre of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with $1.5 times 10^{17}cm^{-3} lesssim n_e(0) lesssim 1 times 10^{18} cm^{-3}$ and $61 mu m gtrsim W_M gtrsim 33 mu m$. Low-density plasma channels of this type would appear to be well-suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.
Hydrodynamic optically-field-ionized (HOFI) plasma channels up to 100mm long are investigated. Optical guiding is demonstrated of laser pulses with a peak input intensity of $6times10^{17}$ W cm$^{-2}$ through 100mm long plasma channels with on-axis
Hollow plasma channels are attractive for lepton acceleration because they provide intrinsic emittance preservation regimes. However, beam breakup instabilities dominate the dynamics. Here, we show that thin, warm hollow channels can sustain large-am
A near-hollow plasma channel, where the plasma density in the channel is much less than the plasma density in the walls, is proposed to provide independent control over the focusing and accelerating forces in a plasma accelerator. In this geometry th
Narrow bandwidth, high energy photon sources can be generated by Thomson scattering of laser light from energetic electrons, and detailed control of the interaction is needed to produce high quality sources. We present analytic calculations of the en
Plasma wake lens in which all short relativistic electron bunches of sequence are focused identically and uniformly is studied analytically and by numerical simulation. For two types of lenses necessary parameters of focused sequence of relativistic