ترغب بنشر مسار تعليمي؟ اضغط هنا

Guiding of high-intensity laser pulses in 100mm-long hydrodynamic optical-field-ionized plasma channels

57   0   0.0 ( 0 )
 نشر من قبل Alex Picksley
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hydrodynamic optically-field-ionized (HOFI) plasma channels up to 100mm long are investigated. Optical guiding is demonstrated of laser pulses with a peak input intensity of $6times10^{17}$ W cm$^{-2}$ through 100mm long plasma channels with on-axis densities measured interferometrically to be as low as $n_{e0} = (1.0pm0.3)times10^{17}$cm$^{-3}$. Guiding is also observed at lower axial densities, which are inferred from magneto-hydrodynamic simulations to be approximately $7times10^{16}$cm$^{-3}$. Measurements of the power attenuation lengths of the channels are shown to be in good agreement with those calculated from the measured transverse electron density profiles. To our knowledge, the plasma channels investigated in this work are the longest, and have the lowest on-axis density, of any free-standing waveguide demonstrated to guide laser pulses with intensities above $>10^{17}$ W cm$^{-2}$.



قيم البحث

اقرأ أيضاً

We present experiments and numerical simulations which demonstrate that fully-ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization (OFI). Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of unit[200]{mm} long plasma channels with axial densities of order $n_e(0) = 1 times 10^{17} cm^{-3}$ and lowest-order modes of spot size $W_M approx 40 mu m$. These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimetre of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with $1.5 times 10^{17}cm^{-3} lesssim n_e(0) lesssim 1 times 10^{18} cm^{-3}$ and $61 mu m gtrsim W_M gtrsim 33 mu m$. Low-density plasma channels of this type would appear to be well-suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.
We report on the stable and continuous operation of a kilohertz laser-plasma accelerator. Electron bunches with 2.6 pC charge and 2.5 MeV peak energy were generated via injection and trapping in a downward plasma density ramp. This density transition was produced in a newly designed asymmetrically shocked gas nozzle. The reproducibility of the electron source was also assessed over a period of a week and found to be satisfactory with similar values of the beam charge and energy. These results show that the reproducibility and stability of the laser-plasma accelerator are greatly enhanced on the long-term scale when using a robust scheme for density gradient injection.
381 - J. Faure 2017
Plasma injection schemes are crucial for producing high-quality electron beams in laser-plasma accelerators. This article introduces the general concepts of plasma injection. First, a Hamiltonian model for particle trapping and acceleration in plasma waves is introduced; ionization injection and colliding-pulse injection are described in the framework of this Hamiltonian model. We then proceed to consider injection in plasma density gradients.
We present methods and preliminary observations of two pulse Direct Laser Acceleration in a Laser-Driven Plasma Accelerator. This acceleration mechanism uses a second co-propagating laser pulse to overlap and further accelerate electrons in a wakefie ld bubble, increasing energy at the cost of emittance when compared to traditional laser wakefield acceleration (LWFA). To this end, we introduce a method of femtosecond scale control of time delay between two co-propagating pulses. We show energy enhancement when the separation between the two pulses approaches the bubble radius.
An experiment for studying laser self-guiding has been carried out for the high power ultrashort pulse laser interaction with an underdense plasma slab. Formation of an extremely long plasma channel and its bending are observed when the laser pulse p ower is much higher than the critical power for relativistic self-focusing. The long self-guiding channel formation is accompanied by electron acceleration with a low transverse emittance and high electric current. Particle-in-cell simulations show that laser bending occurs when the accelerated electrons overtake the laser pulse and modify the refractive index in the region in front of the laser pulse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا